
OS-9 Level One Operating System User’s Guide

Version 02.01.01 BETA1

OS-9 Level One Operating System User’s Guide: Version 02.01.01 BETA1
Copyright © 2003 by The CoCo Community

All Rights Reserved.

Revision History

Revision Org. 1983
Original OS-9 Level One Guide
Revision A March 2003
Updated with the changes made by Boisy Pitre

Table of Contents
Welcome to OS-9! ... i
1. Getting Started... ..1

1.1. What You Need to Run OS-9 ..1
1.1.1. Starting the System..1
1.1.2. In Case You Have Problems Starting OS-91
1.1.3. A Quick Introduction to the Use of the Keyboard and Disks1
1.1.4. Initial Explorations ..2

1.2. Making a Backup of the System Disk..3
1.2.1. Formatting Blank Disks ..3
1.2.2. Running the Backup Program ...3

2. Basic Interactive Functions ..5
2.1. Running Commands and Basic Shell Operation5

2.1.1. Sending Output to the Printer ...5
2.2. Shell Command Line Parameters ..6
2.3. Some Common Command Formats ..6
2.4. Using the Keyboard and Video Display ...7

2.4.1. Video Display Functions...7
2.4.2. Keyboard Shift and Control Functions...8
2.4.3. Control Key Functions ..8

3. The OS-9 File System..11
3.1. Introduction to the Unified Input/Output System11
3.2. Pathlists: How Paths Are Named ..11
3.3. I/O Device Names ...12
3.4. Multifile Devices And Directory Files...12
3.5. Creating and Using Directories..13
3.6. Deleting Directory Files...15
3.7. Additional Information About Directories...15
3.8. Using and Changing Working Directories ...15

3.8.1. Automatic Selection of Working Directories16
3.8.2. Changing Current Working Directories17
3.8.3. Anonymous Directory Names...17

3.9. The File Security System ...17
3.9.1. Examining and Changing File Attributes18

3.10. Reading and Writing From Files ..19
3.10.1. File Usage in OS-9..19
3.10.2. Text Files..19
3.10.3. Random Access Data Files ...20
3.10.4. Executable Program Module Files ..20
3.10.5. Directory Files ..20
3.10.6. Miscellaneous File Usage ...21

3.11. Physical File Organization ..21
4. Advanced Features of the Shell ..23

4.1. A More Detailed Description Command Line Processing23
4.2. Execution Modifiers ...23

4.2.1. Alternate Memory Size Modifier...24
4.2.2. I/O Redirection Modifiers..24

4.3. Command Separators ..25
4.3.1. Sequential Execution ...25
4.3.2. Concurrent Execution ...25
4.3.3. Pipes and Filters...26

4.4. Command Grouping..26
4.5. Built-in Shell Commands and Options ...27
4.6. Shell Procedure Files..28
4.7. Error Reporting...28
4.8. Running Compiled Intermediate Code Programs29
4.9. Setting Up Timesharing System Procedure Files.....................................29

iii

5. Multiprogramming and Memory Management ..31
5.1. Processor Time Allocation and Timeslicing ...31
5.2. Process States ..32
5.3. Creation of New Processes..32
5.4. Basic Memory Management Functions...33

5.4.1. Loading Program Modules Into Memory....................................33
5.4.2. Loading Multiple Programs...35
5.4.3. Memory Fragmentation..35

6. Use of the System Disk...37
6.1. The OS9Boot File ..37
6.2. The SYS Directory ..37
6.3. The Startup File ..38
6.4. The CMDS Directory ...38
6.5. The DEFS Directory ...38
6.6. Changing System Disks...38
6.7. Making New System Disks...38

7. System Command Descriptions..41
7.1. Formal Syntax Notation ..41
7.2. Commands ..41

ATTR..41
BACKUP ...42
BINEX..43
BUILD..44
CHD/CHX..45
CMP ...45
COBBLER..46
CONFIG ..47
COPY ...50
CPUTYPE..51
DATE ...51
DCHECK...52
DEBUG..54
DED ...55
DEL ..56
DELDIR...56
DEVS..57
DMODE...58
DIR...59
DISASM...59
DISPLAY ...60
DSAVE...61
DUMP..62
ECHO ..63
EX...63
EXBIN..64
EXMODE...65
FORMAT ...66
FREE ..67
HELP ...68
IDENT ...69
INIZ ...70
IRQS...71
KILL...71
LINK ..72
LIST..73
LOAD ..73
LOGIN...74
MAKDIR ...76
MDIR ...76
MERGE..77
MFREE...78
OS9GEN ..78
PROCS...80

iv

PWD/PXD..80
RENAME ..81
RUNB...82
SAVE..82
SETIME..82
SETPR ..83
SHELL ...84
SLEEP ..85
TEE...86
TMODE ...86
TSMON ...88
TUNEPORT ..89
UNLINK..90
VERIFY..90
XMODE...91

A. OS-9 Error Codes ..95
A.1. Device Driver Errors...96

B. VDG Display System Functions ..97
B.1. The Video Display Generator...97
B.2. Alpha Mode Display ...97
B.3. Graphics Mode Display ..98
B.4. Get Status Commands...100

C. Key Definitions With Hexadecimal Values ...103
D. Using the Serial Interface ...105

D.1. Serial Printer Implementation ...105
D.2. Serial Terminal Implementation ...105

v

vi

Welcome to OS-9!

The heart of your TRS-80/Tandy Color Computer is an amazing device: the 6809
microprocessor chip. This advanced microcomputer can run the kind of sophis-
ticated software normally found only on much larger and costly computers. Be-
cause the OS-9 operating system was designed by the same people who designed
the 6809 microprocessor, together they provide an extremely efficient and pow-
erful combination.

The foundation of a computer’s software system is its Operating System or "OS".
It is the master control program that interfaces all other software to the system’s
hardware. Some of the things it must do are performing input and output op-
erations, coordinating memory use, and many other "housekeeping" functions.
All other software - programming languages, applications programs, etc. - live
in your computer’s memory along with the OS and depend on it to communi-
cate with you using the keyboard and display and to store and retrieve data on
disks, etc. Because virtually all other software relies on the OS, your computer’s
performance depends on the capabilities and efficiency of its OS.

OS-9’s overall structure was based on the famous UNIX1 operating system, which
has been widely acclaimed as the operating system of the future because of its
versatility, logical structure, and friendly user commands. The OS-9 family of
advanced software is not only more powerful than most other microcomputer
scftware - it is also much easier to learn and use.

Some of the advanced OS-9 features you’ll learn about in this book are:

1. Friendly UNIX-like user interface and environment

2. Multiuser/Multitasking Real-Time Operating System

3. Extensive support for structured, modular programming

4. Device-independent interrupt-driven input/output system

5. Multi-level directory file system

6. Fast Random-Access File System

7. Readily Expandable and Adaptable Design

If you don’t know what some of these thing mean yet - don’t worry. As you
explore OS-9 you’ll soon learn how they enhance the capability of your TRS-
80/Tandy Color Computer and make it so much easier to use in almost any ap-
plication.

OS-9 has many commands and functions - definitely more than you can learn in
an evening! The best way to become an OS-9 expert is to study this manual care-
fully, section-by-section, taking tire to try out each command or function. Because
many functions affect others, you’ll find this manual extensively cross-referenced
so you can skip ahead to help you understand a new topic. Taking the time to
study this book will certainly increase your knowledge and enjoyment of OS-9.

But if you can’t wait, at least read the rest of this chapter, scan the command
descriptions in Chapter 7, and have fun experimenting!

Notes
1. UNIX is an operating system designed by Bell Telephone Laboratories, which

is becoming widely recognized as a standard for mini and micro operating
systems because of its versatility and elegant structure.

i

Introduction

ii

Chapter 1. Getting Started...

1.1. What You Need to Run OS-9
OS-9 Level One Version 02.01.01 BETA1 has been tailored to run on the TRS-
80/Tandy Color Computer. To use it you’ll need the following things:

• A 64K TRS-80/Tandy Color Computer

• A Disk Drive With Contoller Cartridge

• An OS-9 TRS-80/Tandy Color Computer System Disk

OS-9 is also ready to use the following optional equipment that you may have
now or may obtain in the future:

• Additional Floppy Disk Drives

• SCSI or IDE Hard Drives

• Printers and Serial Ports

• Game Joysticks

• Other OS-9 Compatible Languages and Software

1.1.1. Starting the System
To start up OS-9 follow these steps:

1. Turn the TRS-80/Tandy Color Computer and disk drive(s) on. You should
see the usual BASIC greeting message on the screen.

2. Insert the OS-9 System Disk in drive zero and close the door.

3. Type "DOS". After a few seconds of disk activity you should see a screen
with the words "OS9 BOOT".

4. OS-9 will then begin its "bootstrap" loading process, which involves ten to
twenty seconds of disk activity. When the system startup has finished, a
message followed by the shell prompt will be displayed.

1.1.2. In Case You Have Problems Starting OS-9

• If BASIC gives an error message after you type "DOS", remove the disk, turn
the computer off and on, then try again. If this repeatedly fails your OS-9
diskette may be bad.

• Did you remember to turn the disk drive power switch on?

• Does your TRS-80/Tandy Color Computer have 64K RAM? This is a must!

• If your TRS-80/Tandy Color Computer doesn’t seem to understand the DOS
command, your controller has DOS 1.0. You will need to upgrade to DOS 1.1.

• If the "OS9 BOOT message is displayed but nothing else happens, you may
have a corrupted system disk. Hopefully you did make a backup!

1.1.3. A Quick Introduction to the Use of the Keyboard and Disks
For now, the only special keys on the keyboard of interest are the SHIFT key
which works like a typewriter shift key; the ENTER key which you always use
after typing a command or response to OS-9; and the <- left arrow key which you
can use to erase typing mistakes.

1

Chapter 1. Getting Started...

Your main disk drive is known to to OS-9 as "/D0" and is often called "drive
zero". If you have a second disk drive (drive one), OS-9 recognizes it as "/D1".
Why would anybody put a "/" in a name? Because all input and output devices
have names like files, and names that start with "/" are always device names.

1.1.4. Initial Explorations
When OS-9 first starts up, it will display a welcoming message, and then ask you
to enter the date and time. This allows OS-9 to keep track of the date and time
of creation of new files and disks. Enter the current date and time in the format
requested like this:

yyyy/mm/dd hh:mm:ss
Time? 2003 03 01 14 20

In the example above, the date entered was March 1, 2003. OS-9 uses 24-hour
time so the date entered was 1420 hours or 2:20 PM. Next, OS-9 will print the
shell prompt to let you know it is ready for you to type in a command.

Now you’re ready to try some commands. A good first command to try is DIR
(for "directory"). This will display a list of the files on the System Disk. Just type:

dir

followed by a "return". OS-9 should respond with a listing of file names which
should look something like this:

OS9Boot startup CMDS SYS DEFS

The file "OS9Boot" contains the OS-9 program in 6809 machine language, which
was loaded into memory during the bootstrap operation.

The file "startup" is a "command file" which is automatically run when the sys-
tem starts up, and has the commands that printed the welcoming message and
asked for the time. Later, You may want to replace this startup file with your own
customized version after you are more familiar with OS-9. Do you want to see
the contents of this file? If so, just type

list startup

As you can see, the LIST command displays the contents of files that contain text
(alphabetic characters). Some files like the "OS9Boot" file contain binary data such
as machine language programs. These files are called "binary files", and attempts
to list them will result in a jumbled, meaningless display. On the other hand, OS-9
will complain mightily if you try to run a text file as a program!

As you may have surmised by now, the way you ask OS-9 to run a program
or command (they’re really the same thing) is to simply type its name. Some
commands like LIST require one or more names of files or options. If so, they are
typed on the same line using spaces to separate each item.

But where did the LIST and DIR programs come from? There are really more
files on the disk than you suspect. The DIR command showed you what is the
disk’s root directory - so named because the OS-9 filing system resembles a tree.
Growing out of the root directory are three "branches" - files which are additional
directories of file names instead of programs or data. They in turn can have even
more "branches" - ad infinitum. If you draw a map on paper of how this works it
does look like a tree.

The directory files on your system disk are called "CMDS", "SYS", and "DEFS".
The file "CMDS" is a directory that consists of all the system commands such as
DIR, LIST, FORMAT, etc. To see the files contained in this directory, enter:

dir cmds

which tells DIR to show files on the directory file CMDS instead of the root di-
rectory. After you type this you should see a long list of file names. These are the

2

Chapter 1. Getting Started...

complete set of command programs that come with OS-9 and perform a myriad
of functions. Chapter Seven explains each one in detail. The DIR command also
has a handy option to display the CMDS directory with less typing:

dir -x

Whenever you want a list of available commands you can use this so you don’t
have to look it up in the book. The DIR command has options which can give you
more detailed information about each file.

1.2. Making a Backup of the System Disk
Before getting too much more involved in further experimentation, NOW is the
time to make one or more exact copies of your System Disk in case some misfor-
tune befalls your one and only master System Disk. Making a backup involves
two steps: formatting a blank disk and running a backup program.

1.2.1. Formatting Blank Disks
Before the actual backup procedure can be done (or any fresh diskette is used
for any purpose), the blank disk which is to become the backup disk must be
initialized by OS-9’s FORMAT command.

IF YOU HAVE ONLY ONE DISK DRIVE you have to be extra careful not to acci-
dentally FORMAT your system disk. Type:

format /d0

and when you see the message

COLOR COMPUTER FORMATTER
FORMAT DRIVE /D0
Y (YES) OR N (NO)
Ready?

immediately remove your system disk and insert a blank disk before you type "Y".
IF YOU HAVE TWO DISK DRIVES place the blank disk in drive one and type:

FORMAT /D1

WHEN THE BLANK DISK IS IN THE RIGHT PLACE, type "Y", then "ENTER".
This initiates the formatting process. IF THE CORRECT DEVICE NAME (/D1) IS
NOT DISPLAYED: TYPE N RIGHT NOW and start over, OR YOU MAY ERASE
your System Disk.

When you are asked for a disk name, type any letter, then ENTER. The name you
give is not important. If you have only one drive, replace the system disk after the
FORMAT program has finished. If the FORMAT program reported any errors, try
again. Disks used for backups can’t have any errors. You’re now ready to run the
BACKUP program.

It takes several minutes for the FORMAT program to run. During its second
phase the hexadecimal number of each track will be displayed as it is checked
for bad sectors. If any are found an error message for each bad sector is given.

1.2.2. Running the Backup Program
The BACKUP program makes an exact duplicate of a disk. It can be used even if
you only have one disk drive.

IF YOU HAVE ONE DRIVE type

backup /d0 #32k

3

Chapter 1. Getting Started...

The BACKUP program will prompt you to alternately insert the source disk (the
system disk) and the destination disk (the freshly formatted disk).

IF YOU HAVE TWO DRIVES type

backup #32K

The BACKUP program will respond with

Ready to BACKUP from /D0 to /D0 (or /D1) ?

Now enter Y for yes. It will then ask:

X is being scratched
OK ?:

Answer "Y" for yes again, and the BACKUP process should begin.

The BACKUP command has two phases: the first phase copies everything from
drive zero to drive one checking for errors while reading from the master but
not for "write" errors. The second phase is the "verify" pass which makes sure
everything was copied onto the new disk correctly. If any errors are reported
during the first (copy) pass, there is a problem with the master disk or its drive.
If errors occur during the second (verify) pass, there is a problem with the new
disk and the BACKUP program should be run again. If BACKUP repeatedly fails
on the second pass, reformat the disk and try to BACKUP again. If BACKUP fails
again, the disk is physically defective.

After you have made your backup disk, try turning the TRS-80/Tandy Color
Computer off and restarting the system with the copy you just made. If it works
OK, store it in a safe place in case it is needed later. You should always have a
backup copy of your system disk and all other important disks.

4

Chapter 2. Basic Interactive Functions

2.1. Running Commands and Basic Shell Operation
The "shell" is a the part of OS-9 that accepts commands from your keyboard. It
was designed to provide a convenient, flexible, and easy-to-use interface between
you and the powerful functions of the operating system. The shell is automati-
cally entered after OS-9 is started up. You can tell when the shell is waiting for
input because it displays the shell prompt. This prompt indicates that the shell
is active and awaiting a command from your keyboard. It makes no difference
whether you use upper-case letters, lower-case letters, or a combination of both
because OS-9 matches letters of either case.

The command line always begins with a name of a program which can be:

• The name of a machine language program on disk

• The name of a machine language program already in memory

• The name of an executable program compiled by a high-level language such as
Basic09, Pascal, Cobol, etc.

• The name of a procedure file

If you’re a beginner, you will almost always use the first case, which causes the
program to be automatically loaded from the CMDS directory and run.

When processing the command line, the shell searches for a program having the
name specified in the following sequence:

1. If the program named is already in memory, it is run.

2. The "execution directory", usually "CMDS", is searched. If a file having the
name given is found, it is loaded and run.

3. The user’s "data directory" is searched. If a file having the name given
is found, it is processed as a "procedure file" which means that the file is
assumed to contain one or more command lines which are processed by
the shell in the same manner as if they had manually typed in one by one.

Mention is made above of the "data directory" and the "execution directory". At
all times each user is associated with two file directories. A more detailed expla-
nation of directories is presented later. The execution directory (usually CMDS)
includes files which are executable programs.

The name given in the command line may be optionally followed by one or more
"parameters" which are passed to the program called by the shell.

For example, in the command line:

list file1

the program name is LIST, and the parameter passed to it is FILE1.

A command line may also include one or more "modifiers" which are specifi-
cations used by the shell to alter the program’s standard input/output files or
memory assignments.

2.1.1. Sending Output to the Printer
Normally, most commands and programs display output on the TRS-80/Tandy
Color Computer video display. The output of these programs can alternatively
be printed by specifying output redirection on the command line. This is done by
including the following modifier to at the end of any command line:

>/p

The ">" character tells the shell to redirect output (See 4.3.2) to the printer using
the TRS-80/Tandy Color Computer’s printer port, which has the device name

5

Chapter 2. Basic Interactive Functions

"/P" (See 3.2). For example, to redirect the output of the "dir" command to the
printer, enter:

dir >/p

The "xmode" command can be used to set the printer port’s operating mode such
as auto line feed, etc. For example, to examine the printer’s current settings, type:

xmode /p

To change any of these type XMODE followed by the new value. For example, to
set the printer port for automatic line feeds at the end of every line, enter:

xmode /p lf;

2.2. Shell Command Line Parameters
Parameters are generally used to either specify file name(s) or to select options to
be used by the program specified in the command line given to the shell. Param-
eters are separated from the command name and from each other by space char-
acters (hence parameters and options cannot themselves include spaces). Each
command program supplied with OS-9 has an individual description in the last
section of this manual which describe the correct usage of the parameters of each
command.

For example, the LIST program is used to display the contents of a text file on
your display. It is necessary to tell to the LIST program which file it is to be dis-
played, therefore, the name of the desired file is given as a parameter in the com-
mand line. For example, to list the file called startup (the system initialization
procedure file), you enter the command line:

list startup

Some commands have two parameters. For example, the COPY command is used
to make an exact copy of a file. It requires two parameters: The name of the file to
be copied and the name of the file which is to be the copy, for example:

copy startup newstartup

Other commands have parameters which select options. For example:

dir

shows the names of the files in the user’s data directory. Normally it simply lists
the file names only, but if the "-e" (for entire) option is given, it will also give
complete statistics for each file such as the date and time created, size, security
codes, etc. To do so enter:

dir -e

The DIR command also can accept a file name as a parameter which specifies a
directory file other than the (default) data directory. For example, to list file names
in the directory sys , type:

dir sys

It is also possible to specify both a directory name parameter and the e option,
such as:

dir sys -e

giving file names and complete statistics.

6

Chapter 2. Basic Interactive Functions

2.3. Some Common Command Formats
This section is a summary of some commands commonly used by new or casual
OS-9 users, and some common formats. Each command is followed by an ex-
ample. Refer to the individual command descriptions later int his book for more
detailed information and additional examples. Parameters or options shown in
brackets are optional. Whenever a command references a directory file name, the
file must be a directory file.

CHD filename chd DATA.DIR

Changes the current data working directory to the directory file specified.

COPY filename1 filename2 copy oldfile newfile

Creates filename2 as a new file, then copies all data from "filename1" to it. "file-
name1" is not affected.

DEL filename del oldstuff

Deletes (destroys) the file specified.

DIR [filename] [-e] [-x] dir myfiles -e

List names of files contained in a directory. If the "x" option is used the files in the
current execution directory are listed, othervise, if no directory name is given, the
current data directory will be listed. The "e" option selects the long format which
shows detailed information about each file.

FREE devicename free /d1

Shows how much free space remains on the disk whose name is given.

LIST filename list script

Displays the (text) contents of the file on the terminal.

MAKDIR filename makdir NEWFILES

Creates a new directory file using the name given. Often followed by a "chd"
command to make it the new working data directory.

RENAME filename1 filename2 rename zip zap

Changes the name of filename1 to filename2.

2.4. Using the Keyboard and Video Display
OS-9 has many features to expand the capability of the TRS-80/Tandy Color
Computer keyboard and video display. The video display has screen pause, up-
per/lower case, and graphics functions. The keyboard can generate all ASCII
characters and has a type-ahead feature that permits you to enter data before
requested by a program (except if the disk is running because interrupts are tem-
porarily disabled). Appendix C of this manual is a list of the characters and codes
that can be generated from the keyboard. The keyboard/video display can be
used as a file known by the name "/TERM".

2.4.1. Video Display Functions
The TRS-80/Tandy Color Computer uses reverse video (green letters in a black
box) to represent lower-case letters. Normally they are not used, so you have to
turn them on if you want to use them with the command:

tmode -upc

7

Chapter 2. Basic Interactive Functions

The screen pause feature stops programs after 16 lines have been displayed. Out-
put will continue if you hit any key. Normally this feature is on. It can be turned
on or off with the TMODE command as follows:

tmode -pause turns pause mode off
tmode pause turns pause mode on

The display system also has a complete set of commands to emulate commercial
data terminals, plus a complete set of graphics commands. These are described
in detail in Appendix D.

2.4.2. Keyboard Shift and Control Functions
Two keys are used in combination with other keys to change their meaning. The
SHIFT KEY selects between upper case and lower case letters or punctuation, and
the CLEAR key can be used to generate control characters.

The keyboard has a shift lock function similar to a typewriter’s, which is normally
"locked". The keyboard’s shift lock may be reversed by depressing the control key
and 0 keys simultaneously. The shift lock only affects the letter (A-Z) keys. When
the keyboard is locked, these keys generate upper case letters, and lower case
only if the SHIFT key is depressed. When the keyboard is unlocked, the reverse
is true, e.g., lower case letters are generated unless the SHIFT key is depressed at
the same time as a letter key.

2.4.3. Control Key Functions
There are a number of useful control functions that can be generated from the
keyboard. Many of these functions use "control keys" which are generated by
simultaneously depressing the CLEAR key plus some other key. For example, to
generate the character for CONTROL D press the CLEAR and D keys at the same
time.

CONTROL A

Repeat previous input line. The last line entered will be redisplayed but
not processed, with the cursor positioned at the end of the line. You may hit
return to enter the line, or edit the line by backspacing, typing over characters
to correct them, and entering control A again to redisplay the edited line.

CONTROL D

Redisplay present input on next line.

CONTROL W

Display Wait - This will temporarily halt output to the display so the screen
can be read before the data scrolls off. Output is resumed when any other
key is hit.

CONTROL 0

Shift lock. Reverses present shift lock state.

BREAK KEY (or CONTROL E)

Program abort - Stops the current running program

SHIFT BREAK KEY (or CONTROL C)

Interrupt - Reactivates Shell while keeping program running as background
task.

8

Chapter 2. Basic Interactive Functions

CONTROL BREAK KEY (ESCAPE)

End-of-File - This key is used to send an end-of-file to programs that read
input from the terminal in place of a disk or tape file. It must be the first
character on the line in order for it to be recognized.

LEFT ARROW (OR CONTROL H)

Backspace - erase previous character

SHIFT LEFT ARROW (or CONTROL X)

Line Delete - erases the entire current line.

9

Chapter 2. Basic Interactive Functions

10

Chapter 3. The OS-9 File System

3.1. Introduction to the Unified Input/Output System
OS-9 has a unified input/output system in which data transfers to ALL I/O de-
vices are performed in almost exactly the same manner, regardless of the partic-
ular hardware devices involved. It may seem that the different operational char-
acteristics of the I/O devices might make this difficult. After all, line printers and
disk drives behave much differently. However, these differences can mostly be
overcome by defining a set of standardized logical functions for all devices and
by making all I/O devices conform to these conventions, using software routines
to eliminate hardware dependencies wherever possible. This produces a much
simpler and more versatile input/output system.

OS-9’s unified I/O system is based upon logical entities called "I/O paths". Paths
are analogous to "software I/O channels" which can be routed from a program to
a mass-storage file, any other I/O device, or even another program. Another way
to say the same thing is that paths are files, and all I/O devices behave as files.

Data transferred through paths may be processed by OS-9 to conform to the
hardware requirements of the specific I/O device involved. Data transfers can
be either bidirectional (read/write) or unidirectional (read only or write only),
depending on the device and/or how the path was established.

Data transferred through a path is considered to be a stream of 8-bit binary bytes
that have no specific type or value: what the data actually represents depends
on how it is used by each program. This is important because it means that OS-9
does not require data to have any special format or meaning.

Some of the advantages of the unified I/O system are:

• Programs will operate correctly regardless of the particular I/O devices se-
lected and used when the program is actually executed.

• Programs are highly portable from one computer to another, even when the
computers have different kinds of I/O devices.

• I/O can be redirected to alternate files or devices when the program is run,
without having to alter the program.

• New or special device driver routines can easily be created and installed by
the user.

3.2. Pathlists: How Paths Are Named
Whenever a path is established (or "opened"), OS-9 must be given a description
of the "routing" of the path. This description is given in the form of a character
string called a "pathlist". It specifies a particular mass-storage file, directory file,
or any other I/O device. OS-9 "pathlists" are similar to "filenames" used by other
operating systems.

The name "pathlist" is used instead of "pathname" or "filename" because in many
cases it is a list consisting of more than one name to specify a particular I/O
device or file. In order to convey all the information required, a pathlist may
include a device name, one or more directory file names and a data file name.
Each name within a pathlist is separated by slash "/" characters.

Names are used to describe three kinds of things:

• Names of Physical I/O Devices

• Names of Regular Files

• Names of Directory Files

11

Chapter 3. The OS-9 File System

Names can have one to 29 characters, all of which are used for matching. They
must becin with an upper- or lower-case letter followed by any combination of
the following characters:

uppercase letters: A - Z
lowercase letters: a - z
decimal digits: 0 - 9
underscore: _
period: .

Here are examples of legal names:

raw.data.2 projectreview.backup

reconciliation.report X042953

RJJones search.bin

Here are examples of illegal names:

22November (does not start with a letter)

max*min (* is not a legal character)

.data (does not start with a letter)

open orders (cannot contain a space)

this.name.obviously.has.more.than.29.characters (too long)

3.3. I/O Device Names
Each physical input/output device supported by the system must have a unique
name. The actual names used are defined when the system is set up and cannot
be changed while the system is running. The device names used for the TRS-
80/Tandy Color Computer are:

TERM Video display/keyboard

P Printer port

D0 Disk drive unit zero

D1 Disk drive unit one

PIPE Pipes

Device names may only be used as the first name of a pathlist, and must be pre-
ceded by a slash "/" character to indicate that the name is that of an I/O device.
If the device is not a disk or similar device the device name is the only name al-
lowed. This is true for devices such as terminals, printers, etc. Some examples of
of pathlists that refer to I/O devices are:

/TERM
/P
/D1

I/O device names are actually the names of the "device descriptor modules" kept
by OS-9 in an internal data structure called the "module directory" (See the OS-
9 System Programmer’s manual for more information about device driver and
descriptor modules). This directory is automatically set up during OS-9’s system
start up sequence, and updated as modules are added or deleted while the system
is running.

12

Chapter 3. The OS-9 File System

3.4. Multifile Devices And Directory Files
Multifile devices are mass storage devices (usually disk systems) that store data
organized into separate logical entities called "files". Each file has a name which is
entered in a directory file. Every multifile device has a master directory (called the
"root directory") that includes the names of the files and sub-directories stored on
the device. The root directory is created automatically when the disk is initialized
by the "format" command.

Pathlists that refer to multifile devices may have more than one name. For ex-
ample, to refer to the file "mouse" whose name appears in the root directory of
device "D1" (disk drive one) the following pathlist is used:

/d1/mouse

When OS-9 is asked to create a path, it uses the names in the pathlist sequentially
from left to right to search various directories to obtain the necessary routing
information. These directories are organized as a tree-structured hierarchy. The
highest-level directory is called the "device directory", which contains names and
linkages to all the I/O devices on a given system. If any of the devices are of a
multifile type they each have a root directory, which is the next-highest level.

The diagram below is a simplified file system tree of a typical OS-9 system disk.
Note that device and directory names are capitalized and ordinary file names are
not. This is a customary (but not mandatory) practice which allows you to easily
identify directory files using the short form of the "dir" command.

System Device Directory
+---------------------------------+
! ! ! !
D0 TERM P D1
! !
! !
! !

D0 Root Directory D1 Root Directory
+----------------------+ +----------------------+
! ! ! ! ! !

DEFS startup CMDS file1 file2 file3
! !
! !
! !

--+-- +-----+----+-----+-----+
! ! ! ! ! !

OS9Defs copy list dir del backup

The device names in this example system are "TERM", "P", "D0" and "D1". The
root directory of device "D0" includes two directory files, DEFS and CMDS, and
one ordinary file "startup". Notice that device "D1" has in its root directory three
ordinary files. In order to access the file "file2" on device "d1", a pathlist having
two names must be used:

list /d1/file2

To construct a pathlist to access the file "dir" on device "d0" it is necessary to
include in the pathlist the name of the intermediate directory file "CMDS". For
example, to copy this file requires a pathlist having three names to describe the
"from" file:

copy /d0/cmds/dir temp

3.5. Creating and Using Directories
It is possible to create a virtually unlimited number of levels of directories on a
mass storage device using the "makdir" command. Directories are a special type
of file (see 3.8.1). They can be processed by the same I/O functions used to access
regular files which makes directory-related processing fairly simple.

13

Chapter 3. The OS-9 File System

To demonstrate how directories work, assume that the disk in drive one ("d1")
has been freshly formatted so that it has a root directory only. The build command
can be used to create a text file on "d1". The build command will print out "?" as a
prompt to indicate that it is waiting for a text line to be entered. It will place each
line into the text file until an empty line with only a carriage return is entered, as
shown below:

OS9: build /d1/file1
? This is the first file that
? we created.
? [ENTER]

The "dir" command will now indicate the existence of the new file:

OS9: dir /d1

Directory of /d1 15:45:29
file1

The "list" command can be used to display the text stored in the file:

OS9: list /d1/file1

This is the first file
that we created.

The "build" command again is again used to create two more text files:

OS9: build /d1/file2
? This is the second file
? that we created.
? [ENTER]

OS9: build /d1/file3
? This is another file.
? [ENTER]

The dir command will now show three file names:

OS9: dir /d1
Directory of /D1 15:52:29

file1 file2 file3

To make a new directory in this directory, the "makdir" command is used. The
new directory will be called "NEWDIR". Notice that throughout this manual di-
rectory names are always capitalized. This is not a requirement of OS-9 (see 3.1) .
Rather, it is a practice popular with many OS-9 users because it allows easy identi-
fication of directory files at all times (assuming all other file names use lower-case
letters).

OS9: makdir /D1/NEWDIR

The directory file "NEWDIR" is now a file listed in D1’s root directory:

OS9: dir /D1

Directory of /D1 16:04:31
file1 file2 file3 NEWDIR

Now we will create a new file and put in the new directory, using the COPY
command to duplicate "file1":

OS9: copy /d1/file1 /d1/newdir/file1.copy

Observe that the second pathlist now has three names: the name of the root di-
rectory ("D1"), the name of the next lower directory ("NEWDIR"), then the actual
file name ("file1.copy"). Here’s what the directories look like now:

D1 Root Directory

14

Chapter 3. The OS-9 File System

+---------+--------+--------+
! ! ! !

NEWDIR file1 file2 file3
!
!

file1.copy

The dir command can now show the files in the new directory:

OS9: dir /D1/NEWDIR

Directory of /D1/NEWDIR
file1.copy

It is possible to use "makdir" to create additional new directories within
"NEWDIR", and so on, limited only by available disk space.

3.6. Deleting Directory Files
The "del" command cannot be used to directly delete a directory file. If a direc-
tory file that still contained file names were to be deleted, OS-9 would have no
way to access the files or to return their storage to the unallocated storage pool.
Therefore, the following sequence must be performed to delete a directory file:

1. All file names in the directory must be deleted.

2. The "attr" command is used to turn off the files directory attrribute (-d option),
making it an ordinary file (see 3.8).

3. The file may now be deleted using the "del" command.

A simpler alternative is to use the DELDIR command to automatically perform
all these steps for you.

3.7. Additional Information About Directories
The OS-9 directory system is very useful because it allows each user to privately
organize files as desired (by project, function, etc.), without affecting other files or
other user’s files. Another advantage of the hierarchical directory system is that
files with identical names can be kept on the same device as long as the names
are in different directories. For example, you can have a set of test files to check
out a program using the same file names as the program’s actual working files.
You can then run the program with test data or actual data simply by switching
directories.

Here are some important characteristics relating to use of directory files:

• Directories have the same ownership and security attributes and rules as reg-
ular files.

• The name of a given file appears in exactly one directory.

• Files can only be added to directories when they are created.

• A file and the directory in which its name is kept must reside on the same
device.

3.8. Using and Changing Working Directories
Each program (process) has two "working directories" associated with it at all
times: a "data directory" and an "execution directory". The working directory
mechanism allows the name searching involved in pathlist processing to start
at any level (subtree) of the file system hierarchy. Any directory that the user has
permission to access (see 3.8) can be made a working directory.

15

Chapter 3. The OS-9 File System

The rules used to determine whether pathlists refer to the current working direc-
tory or not are simple:

---> When the first character of a pathlist IS a "/", processing of the pathlist starts
at the device directory, e.g., the first name MUST be a device name.

---> When the first character of a pathlist IS NOT a "/", processing of the pathlist
starts at the current working directory.

Notice that pathlists starting with a "/" must be complete, in other words, they
must have all names required to trace the pathlist from the device directory down
through all intermediate directories (if any). For example:

/d2/JOE/WORKINGFILES/testresults

On the other hand, use of the current working directory allows all names in the
file hierarchy tree to be implied instead of explicitly given. This not only makes
pathlists shorter, but allows OS-9 to locate files faster because (typically) fewer
directories need be searched. For example, if the current working directory is
"/D1/PETE/GAMES" and a pathlist is given such as:

baseball

the actual pathlist implied is:

/D1/PETE/GAMES/baseball

Pathlists using working directories can also specify additional lower-level direc-
tories. Referring to the example above, the pathlist:

ACTION/racing

implies the complete pathlist:

/D1/PETE/GAMES/ACTION/racing

3.8.1. Automatic Selection of Working Directories
Recall that two working directories are referred to as the "current execution di-
rectory" and the "current data directory". The reason two working directories are
maintained is so that files containing programs can be organized in different di-
rectories than files containing data. OS-9 automatically selects either working di-
rectory, depending on the usage of the pathlist:

---> OS-9 will search the execution directory when it attempts to load files into
memory assumed to be executable programs. This means that programs to be run
as commands or loaded into memory must be in the current execution directory.

---> The data directory is used for all other file references (such as text files, etc.)

Immediately after startup, OS-9 will set the data directory to be (the root direc-
tory of) the system disk drive (usually "D0"), and the working directory to be
a directory called "cmds" on the same drive ("/D0/cmds"). On timesharing sys-
tems, the "login" command selects the initial execution and data directories to
the file names specified in each user’s information record stored in the system
password file(ref. 5.4.2).

Here is an example of a shell command statement using the default working di-
rectory notation, and its equivalent expansion:

copy file1 file2

If the current execution directory is "/D0/CMDS" and the current data directory
is "/D0/JONES", the same command, fully expanded to show complete pathlists
implied is:

OS9: /D0/CMDS/copy /D0/JONES/filel /D0/JONES/file2

Notice that the first pathlist "copy" expands to the current working directory
pathlist because it is assumed to be an executable program but the two other

16

Chapter 3. The OS-9 File System

file names expand using the data directory because they are not assumed to be
executable.

3.8.2. Changing Current Working Directories
The built-in shell commands "chd" and "chx" can be used to independently
change the current working data and execution directories, respectively. These
command names must be followed by a pathlist that describes the new directory
file. You must have permission to access the directory according to normal file
security rules. Here are some examples:

OS9: chd /D1/MY.DATAFILES

OS9: chx /D0/TESTPROGRAMS

When using the CHD or CHX commands, pathlists work the same as they do for
regular files, except for the last name in the pathlist must be a directory name. If
the pathlist begins with a "/" , OS-9 will begin searching in the device directory
for the new working directory, otherwise searching will begin with the present
directory. For example, the following sequence of commands set the working di-
rectory to the same file:

OS9: CHD /D1/SARAH
OS9: CHD PROJECT1

OS9: CHD /D1/SARAH/PROJECT1 (same effect as above)

3.8.3. Anonymous Directory Names
Sometimes is useful to be able to refer to the current directory or the next higher-
level directory, but its name (full pathlist) may not be known. Because of this,
special "name substitutes" are available. They are:

"." refers to the present working directory

".." refers to the directory that contains the name of the present directory (e.g., the
next highest level directory)

"..." refers to directory two levels up, and so on

These can be used in place of pathlists and/or the first name in a pathlist. Here
are some examples:

OS9: dir . lists file names in the working data directory

OS9: dir .. lists names in the working data directory’s
parent directory.

OS9: del ../temp deletes the file "temp" from the working data
directory’s parent directory.

The substitute names refer to either the execution or data directories, depending
on the context in which they are used. For example, if ".." is used in a pathlist of a
file which will be loaded and/or executed, it will represent the parent directory of
the execution directory. Likewise, if "." is used in a pathlist describing a program’s
input file, it will represent the current data directory.

3.9. The File Security System
Every file (including directory files) has properties called ownership and attributes
which determine who may access the file and how it many be used.

OS-9 automatically stores with each file the user number associated with the pro-

17

Chapter 3. The OS-9 File System

cess that created it. This user is considered to be the "owner" of the file.

Usage and security functions are based on "attributes", which define how and by
whom the file can be accessed. There are a total of seven attributes, each of which
can be turned "off" or "on" independently. The "d" attribute is used to indicate
(when on) that the file is a directory file. The other six attributes control whether
the file can be read, written to, or executed, by either the owner or by the "public"
(all other users). Specifically, these six attributes are:

WRITE PERMISSION FOR OWNER: If on, the owner may write to the file or
delete it. This permission can be used to protect important files from accidental
deletion or modification.

READ PERMISSION FOR OWNER: If on, the owner is allowed to read from the
file. This can be used to prevent "binary" files from being used as "text" files

EXECUTE PERMISSION FOR OWNER: If on, the owner can load the file into
memory and execute it. Note that the file must contain one or more valid OS-9
format memory modules in order to actually load

The following "public permissions" work the same way as the "owner permis-
sions" above but are applied to processes having DIFFERENT user numbers than
the file’s owner.

WRITE PERMISSION FOR PUBLIC - If on, any other user may write to or delete
the file.

READ PERMISSION FOR PUBLIC - If on, any other user may read (and possibly
copy) the file.

EXECUTE PERMISSION FOR PUBLIC - If on, any other user may execute the
file.

For example, if a particular file had all permissions on except "write permit to
public" and "read permit to public", the owner would have unrestricted access to
the file, but other users could execute it, but not read, copy, delete, or alter it.

3.9.1. Examining and Changing File Attributes
The "DIR" command may be used to examine the security permissions of the
files in any particular directory when the "e" option is used. An example using
the "dir e" command to show the detailed attributes of the files in the current
working directory is:

Directory of . 10:20:44

Owner Last Modified Attributes Sector Bytecount Name
----- ----------------- ---------- ------ --------- ----

1 2002/05/29 14:02 --e--e-r 47 42 file1
0 2002/10/12 02:15 ---wr-wr 48 43 file2
3 2002/04/29 23:35 -s----wr 51 22 file3
1 2003/01/06 16:19 d--wr-wr 6D 800 NEWDIR

This display is fairly self-explanatory. The "attributes" column shows which at-
tributes are currently on by the presence or absence of associated characters in
the following format:

dsewrewr

The character positions correspond to from left to right: directory; sharable; pub-
lic execute; public write; public read; owner execute; owner write; owner read.
The "attr" command is used to examine or change a file’s attributes. Typing "attr"
followed by a file name will result in the present attributes to be displayed, for
example:

OS9: attr file2
-s-wr-ewr

If the command is used with a list of one or more attribute abbreviations, the file’s
attributes will be changed accordingly (if legal). For example, the command:

18

Chapter 3. The OS-9 File System

OS9: attr file2 pw pr -e -pe

enables public write and public read permissions and removes execute permis-
sion for both the owner and the public.

The "directory" attribute behaves somewhat differently than the read, write, and
execute permissions. This is because it would be quite dangerous to be able to
change directory files to normal files, and creation of a directory requires special
initialization. Therefore, the "attr" command cannot be used to turn the directory
(d) attribute on (only "makdir" can), and can be used to turn it off only if the
directory is empty.

3.10. Reading and Writing From Files
A single file type and format is used for all mass storage files. Files store an or-
dered sequence of 8-bit bytes. OS-9 is not usually sensitive to the contents of files
for most functions. A given file may store a machine language program, charac-
ters of text, or almost anything else. Data is written to and read from files exactly
as given. The file can be any size from zero up to the maximum capacity of the
storage device, and can be expanded or shortened as desired.

When a file is created or opened a "file pointer" is established for it. Bytes within
the file are addressed like memory, and the file pointer holds the "address" of the
next byte in the file to be written to or read from. The OS-9 "read" and "write" ser-
vice functions always update the pointer as data transfers are performed. There-
fore, successive read or write operations will perform sequential data transfers.

Any part of a file can also be read or written in non-sequential order by using a
function called "seek" to reposition the file pointer to any byte address in the file.
This is used when random access of the data is desired.

To expand a file, you can simply write past the previous end of the file. Reading
up to the last byte of a file will cause the next "read" request to return an end-of-
file status.

3.10.1. File Usage in OS-9
Even though there is physically only one type of file, the logical usage of files
in OS-9 covers a broad spectrum. Because all OS-9 files have the same physical
type, commands such as "copy", "del", etc., can be used with any file regardless
of its logical usage. Similarly, a particular file can be treated as having a different
logical usage at different times by different programs. The main usage of files
covered in this section are:

TEXT
RANDOM ACCESS DATA
EXECUTABLE PROGRAM MODULES
DIRECTORIES
MISCELLANEOUS

3.10.2. Text Files
These files contain variable-length sequences ("lines") of ASCII characters. Each
line is terminated by a carriage return character. Text files are used for program
source code, procedure files, messages, documentation, etc. The Text Editor op-
erates on this file format.

Text files are usually read sequentially, and are supported by almost all high-
level languages (such as BASIC09 READ and WRITE statements). Even though
is is possible to randomly access data at any location within a text file, it is rarely
done in practice because each line is variable length and it is hard to locate the
beginning of each line without actually reading the data to locate carriage return
characters.

The content of text files may be examined using the "list" command.
19

Chapter 3. The OS-9 File System

3.10.3. Random Access Data Files
Random-access data files are created and used primarily from within high-level
languages such as Basic09, Pascal, C, and Cobol. In Basic09 and Pascal, "GET",
"PUT", and "SEEK" functions operate on random-access files.

The file is organized as an ordered sequence of "records". Each record has exactly
the same length, so given a record’s numerical index, the record’s beginning ad-
dress within the file can be computed by multiplying the record number by the
number of bytes used for each record. Thus, records can be directly accessed in
any order.

In most cases, the high-level language allows each record to be subdivided into
"fields". Each field generally has a fixed length and usage for all records within
the file. For example, the first field of a record may be defined as being 25 text
characters, the next field may be two bytes long and used to hold 16-bit binary
numbers, etc.

It is important to understand that OS-9 itself does not directly process or deal
with records other than providing the basic file functions required by all high-
level languages to create and use random-access files.

3.10.4. Executable Program Module Files
These files are used to hold program modules generated by the assembler or com-
piled by high-level languages. Each file may contain one or more program modules.

OS-9 program modules resident in memory have a standard module format that,
besides the object code, includes a "module header" and a CRC check value. Pro-
gram module(s) stored in files contain exact binary copies of the programs as they
will exist in memory, and not one byte more. OS-9 does not require a "load record"
system commonly used by other operating systems because OS-9 programs are
position-independent code and therefore do not have to be loaded into specific
memory addresses.

In order for OS-9 to load the program module(s) from a file, the file itself must
have execute permission and each module must have a valid module header and
CRC check value. If a program module has been altered in any way, either as a
file or in memory, its CRC check value will be incorrect And OS-9 will refuse to
load the module. The "verify" command can be used to check the correctness of
the check values, and update them to corrected values if necessary.

On Level One systems, if a file has two or more modules, they are treated as
independent entities after loading and reside at different memory regions.

Like other files that contain "binary" data, attempts to "list program files will re-
sult in the display of random characters on the terminal giving strange effects.
The "dump" command can be used to safely examine the contents of this kind of
file in hexadecimal and controlled ASCII format.

3.10.5. Directory Files
Directory files play a key role in the OS-9 file system. Sections 3.3 through 3.7 of
this chapter describe how they are used by various OS-9 features.

Directory files can only be created by the "makdir" command, and can be iden-
tified by the "d" attribute being set (see 3.8.1). The file is organized into 32-byte
records. Each record can be a directory entry. The first 29 bytes of the record is a
string of characters which is the file name. The last character of the name has its
sign bit (most significant bit) set. If the record is not in use the first character po-
sition will have the value zero. The last three bytes of the record is a 24-bit binary
number which is the logical sector number where the file header record (see 3.10)
is located.

The "makdir" command initializes all records in a new directory to be unused
entries except for the first two entries. These entries have the names "." and ".."

20

Chapter 3. The OS-9 File System

along with the logical sector numbers of the directory and its parent directory,
respectively (see 3.7.3).

Directories cannot be copied or listed - the "dir" command is used instead. Direc-
tories also cannot be deleted directly (see 3.5).

3.10.6. Miscellaneous File Usage
OS-9’s basic file functions are so versatile it is possible to devise an almost unlim-
ited number of special-purpose file formats for particular applications, which do
not fit into any of the three previously discussed categories.

Examples of this category are COBOL Indexed Sequential (ISAM) files and some
special word processor file formats which allow random access of text lines. As
discussed in Sec. 3.9.1, most OS-9 utility commands work with any file format
including these special types. In general, the "dump" command is the preferred
method for examining the contents of unusually formatted files.

3.11. Physical File Organization
OS-9’s file system implements a universal logical organization for all I/O devices
that effectively eliminates most hardware-related considerations for most appli-
cations. This section gives basic information about the physical file structure used
by OS-9. For more information, see the OS-9 System Programmer’s Manual.

Each OS-9 file is comprised of one or more sectors which are the physical stor-
age units of the disk systems. Each sector holds exactly 256 data bytes, and disk
is numbered sequentially starting with sector zero, track zero. This number is
called a "logical sector number", or LSN. The mapping of logical sector numbers
to physical track/sector numbers is done by the disk driver module.

Sectors are the smallest allocatable physical unit on a disk system, however, to in-
crease efficiency on some larger-capacity disk. systems, OS-9 uses uniform-sized
groups of sectors, called clusters, as the smallest allocatable unit. Cluster sizes are
always an integral power of two (2, 4, 8, etc.). One sector of each disk is used
as a bitmap (usually LSN 1), in which each data bit corresponds to one cluster
on the disk. The bits are set and cleared to indicate which clusters are in use (or
defective), and which are free for allocation to files.

The TRS-80/Tandy Color Computer Computer disk system uses the following
format:

• double density recording on one side

• 40 tracks per disk

• 18 sectors per track

• one sector per cluster

Each file has a directory entry (see 3.9.5) which includes the file name and the log-
ical sector number of the file’s "file descriptor sector", which contains a complete
description of the file including:

• attributes

• owner

• date and time created

• size

• segment list (description of data sector blocks)

Unless the file size is zero, the file will have one or more sectors/clusters used
to store data. The data sectors are grouped into one or more contiguous blocks
called "segments".

21

Chapter 3. The OS-9 File System

22

Chapter 4. Advanced Features of the Shell

The basic shell functions were introduced in a prior chapter in order to provide
an understanding of how basic OS-9 commands work. In this section the more
advanced capabilities of the shell are discussed. In addition to basic command
line processing, the shell has functions that facilitate:

• I/O redirection (including filters)

• Memory Allocation

• Multitasking (concurrent execution)

• Procedure File Execution (background processing)

• Execution Control (built-in commands)

There is a virtually unlimited combination of ways these capabilities can be used,
and it is impossible to give more than a representative set of examples in this
manual. You are therefore encouraged to study the basic rules, use your imagina-
tion, and explore the possibilities on your own.

4.1. A More Detailed Description Command Line Processing
The shell is a program that reads and processes command lines one at a time from
its input path (usually your keyboard). Each line is first scanned (or "parsed") in
order to identify and process any of the following parts which may be present:

• A program, procedure file, or built-in command name ("verbs")

• Parameters to be passed to the program

• Execution modifiers to be processed by the shell

Note that only the verb (the program or command name) need be present, the
other parts are optional. After the verb has been identified, the shell processes
modifiers (if any). Any other text not yet processed is assumed to be parameters
and passed to the program called.

Unless the verb is a "built-in command", the shell will run the program named
as a new process (task). It then deactivates itself until the program called even-
tually terminates, at which time it gets another input line, then the process is
repeated. This happens over and over until an end-of-file condition is detected
on the shell’s input path which causes the shell to terminate its own execution.

Here is a sample shell line which calls the assembler:

asm sourcefile l -o >/p #12k

In this example:

asm is the verb

sourcefile l -o are parameters passed to "asm

>/p is a modifier which redirects the output (listing)
to the system’s printer

#12K is a modifier which requests that the process be
assigned 12K bytes of memory instead of its
(smaller) default amount.

The verb must be the first name in the command line. After it has been scanned,
the shell first checks if it is a "built-in" command. If it is, it is immediately exe-
cuted. Otherwise, the shell assumes it is a program name and attempts to locate
and execute it.

23

Chapter 4. Advanced Features of the Shell

4.2. Execution Modifiers
Execution modifiers are processed by the shell before the program is run. If an
error is detected in any of the modifiers, the run will be aborted and the error
reported. Characters which comprise modifiers are stripped from the part(s) of
the command line passed to the program as parameters, therefore, the characters
reserved for use as modifiers (# ; ! < > &) cannot be used inside parameters, but
can be used before or after the parameters.

4.2.1. Alternate Memory Size Modifier
When command programs are invoked by the shell, they are allocated the
minimum amount of working RAM memory specified in the program’s module
header. A module header is part of all executable programs and holds the
program’s name, size, memory requirements, etc. Sometimes it is desirable to
increase this default memory size. Memory can be assigned in 256-byte pages
using the modifier "#n" where n is the decimal number of pages, or in 1024
byte increments using the modifier "#nK". The two examples below behave
identically:

OS9: copy #8 file1 file2 (gives 8*256 = 2048 bytes)
OS9: copy #2K file1 file2 (gives 2*1024 = 2048 bytes)

4.2.2. I/O Redirection Modifiers
The second kind of modifier is used to redirect the program’s "standard I/O
paths" to alternate files or devices. Well-written OS-9 programs use these paths
for routine I/O. Because the programs do not use specific file or device names,
it is fairly simple to "redirect" the I/O to any file or device without altering the
program itself. Programs which normally receive input from a terminal or send
output to a terminal use one or more of the standard I/O paths as defined below:

STANDARD INPUT: This path normally passes data from the terminal’s key-
board to the program.

STANDARD OUTPUT PATH: This path is normally used to output data from the
program to the terminal’s display.

STANDARD ERROR OUTPUT PATH: This path is used to output routine status
messages such as prompts and errors to the terminal’s display (defaults to the
same device as the standard output path). NOTE: The name "error output" is
sometimes misleading since many other kinds of messages besides errors are sent
on this path.

When new processes are created, they inherit their parent process’ standard I/O
paths. Therefore, when the shell creates new processes, they usually inherit its
standard I/O paths. When you log-on the shell’s standard input is the terminal
keyboard; the standard output and error output is the terminal’s display. When
a redirection modifier is used on a shell command line, the shell will open the
corresponding paths and pass them to the new process as its standard I/O paths.
There are three redirection modifiers as given below:

< Redirect the standard input path

> Redirect the standard output path

>> Redirect the standard error output path

When redirection modifiers are used on a command line, they must be immedi-
ately followed by a pathlist describing the file or device the I/O is to be redirected
to or from. For example, the standard output of "list" can be redirected to write to
the system printer instead of the terminal:

OS9: list correspondence >/p

Files referenced by I/O redirection modifiers are automatically opened or cre-
24

Chapter 4. Advanced Features of the Shell

ated, and closed (as appropriate) by the shell. Here is another example, the output
of the DIR command is redirected to the file "/D1/savelisting":

OS9: DIR >/D1/savelisting

If the LIST command is used on the file "/D1/savelisting", output from the DIR
command will be displayed as shown below:

OS9: list /d1/savelisting

Directory of . 10:15:00
myfile savelisting file1

Redirection modifiers can be used before and/or after the program’s parameters,
but each modifier can only be used once.

4.3. Command Separators
A single shell input line can request execution of more than one program. These
programs may be executed sequentially or concurrently. Sequential execution
means that one program must complete its function and terminate before the
next program is allowed to begin execution. Concurrent execution means that
several programs are allowed to begin execution and run simultaneously.

4.3.1. Sequential Execution
Programs are executed sequentially when each is entered on a separate line. More
than one program can be specified on a single shell command line by separating
each program name parameters from the next one with a ";" character. For
example:

OS9: copy myfile /d1/newfile ; dir >/p

This command line will first execute the COPY command and then the DIR com-
mand.

If an error is returned by any program, subsequent commands on the same line
are not executed (regardless of the state of the "x" option), otherwise, ";" and "re-
turn" are identical separators.

Here are some more examples:

OS9: copy oldfile newfile; del oldfile; list newfile

OS9: dir >/d1/myfile ; list temp >/p; del temp

All programs executed sequentially are in fact separate, child processes of the
shell. After initiating execution of a program to be executed sequentially, the shell
enters the "wait" state until execution of the called program terminates.

4.3.2. Concurrent Execution
The second kind of separator is the "&" which implies concurrent execution,
meaning that the program is run (as a separate, child process), but the shell does
not wait for it to complete before processing the next command.

The concurrent execution separator is therefore the means by which multipro-
gramming (running two or more programs simultaneously) is accomplished. The
number of programs that can run at the same time is not fixed: it depends upon
the amount of free memory in the system versus the memory requirements of the
specific programs. Here is an example:

OS9: dir >/p&
&007

25

Chapter 4. Advanced Features of the Shell

OS9:

This command line will cause shell to start the DIR command executing, print
the process ID number (&007), and then immediately display the "OS9:" prompt
and wait for another command to be entered. Meanwhile the DIR command will
be busy sending a directory listing to the printer. You can display a "status sum-
mary" of all processes you have created by using the PROCS command. Below is
another example:

OS9: dir >/p& list file1& copy file1 file2 ; del temp

Because they were followed by "&" separators, the DIR, LIST, and COPY pro-
grams will run concurrently, but the DEL program will not run until the COPY
program has terminated because sequential execution (";") was specified.

4.3.3. Pipes and Filters
The third kind of separator is the "!" character which is used to construct
"pipelines". Pipelines consist of two or more concurrent programs whose
standard input and/or output paths connect to each other using "pipes".

Pipes are the primary means-by which data is transferred from process to process
(interprocess communications). Pipes are first-in, first-out buffers that behave like
mass-storage files.

I/O transfers using pipes are automatically buffered and synchronized. A single
pipe may have several "readers" and several "writers". Multiple writers send, and
multiple readers accept, data to/from the pipe on a first-come, first-serve basis.
An end-of-file will occur if an attempt is made to read from a pipe but there are no
writers available to send data. Conversely, a write error will occur if an attempt
is made to write to a pipe having no readers.

Pipelines are created by the shell when an input line having one or more "!" sep-
arators is processed. For each "!", the standard output of the program named to
the left of the "!" is redirected via a pipe to the standard input of the program
named to the right of the "!". Individual pipes are created for each "!" present. For
example:

OS9: update <master_file ! sort ! write_report >/p

In the example above, the program "update" has its input redirected from a path
called "master_file". Its standard output becomes the standard input for the pro-
gram "sort". Its output, in turn, becomes the standard input for the program
"write_report", which has its standard output redirected to the printer.

All programs in a pipeline are executed concurrently. The pipes automatically
synchronize the programs so the output of one never "gets ahead" of the input
request of the next program in the pipeline. This implies that data cannot flow
through a pipeline any faster than the slowest program can process it. Some of
the most useful applications of pipelines are jobs like character set conversion,
print file formatting, data compression/decompression, etc. Programs which are
designed to process data as components of a pipeline are often called "filters". The
"tee" command, which uses pipes to allow data to be simultaneously "broadcast"
from a single input path to several output paths, is a useful filter.

4.4. Command Grouping
Sections of shell input lines can be enclosed in parentheses which permits modi-
fiers and separators to be applied to an entire set of programs. The shell processes
them by calling itself recursively (as a new process) to execute the enclosed pro-
gram list. For example:

OS9: (dir /d0; dir /d1) >/p

26

Chapter 4. Advanced Features of the Shell

gives the same result as:

OS9: dir /d0 >/p; dir /d1 >/p

except for the subtle difference that the printer is "kept" continuously in the first
example; in the second case another user could "steal" the printer in between the
"dir" commands.

Command grouping can be used to cause a group of programs to be executed
sequentially, but also concurrently with respect to the shell that initiated them,
such as:

OS9: (del file1; del file2; del file3)&

A useful extension of this form is to construct pipelines consisting of sequential
and/or concurrent programs. For example:

OS9: (dir CMDS; dir SYS) ! makeuppercase ! transmit

Here is a very practical example of the use of pipelines. Recall that the "DSAVE"
command generates a procedure file to copy all the files in a directory. The exam-
ple below shows how the output of "DSAVE" can be pipelined to a shell which
will execute the OS-9 commands as they are generated by DSAVE. Assume that
we want to copy all files from a directory called WORKING to a directory called
ARCHIVE:

OS9: chd /d0/WORKING; dsave /d0/ARCHIVE ! shell -p

4.5. Built-in Shell Commands and Options
When processing input lines, the shell looks for several special names of com-
mands or option switches that are built-in the shell. These commands are exe-
cuted without loading a program and creating a new process, and generally affect
how the shell operates. They can be used at the beginning of a line, or following
any program separator (";", "&", or "!"). Two or more adjacent built-in commands
can be separated by spaces or commas.

The built-in commands and their functions are:

chd pathlist change the working data directory to the directory
specified by the pathlist.

chx pathlist change the working execution directory to the directory
specified by the pathlist.

ex name directly execute the module named. This transforms the
shell process so it ceases to exist and a new module
begins execution in its place.

w wait for any process to terminate.

* text comment: "text" is not processed.

kill Proc ID abort the process specified.

setpr proc ID
priority

changes process’ priority.

x causes shell to abort on any error (default)

-x causes shell not to abort on error

p turns shell prompt and messages on (default)

-p inhibits shell prompt and messages

t makes shell copy all input lines to output

-t does not copy input lines to output (default)

The change directory commands switch the shell’s working directory and, by

27

Chapter 4. Advanced Features of the Shell

inheritance, any subsequently created child process. The "ex" command is used
where the shell is needed to initiate execution of a program without the overhead
of a suspended "shell" process. The name used is processed according to standard
shell operation, and modifiers can be used.

4.6. Shell Procedure Files
The shell is a reentrant program that can be simultaneously executed by more
than one process at a time. As is the case with most other OS-9 programs, it uses
standard I/O paths for routine input and output. specifically, it requests com-
mand lines from the standard input path and writes its prompts and other data
to the standard error path.

The shell can start up another process also running the shell by means of the
"shell" command. If the standard input path is redirected to a mass storage file,
the new "incarnation" of the shell can accept and execute command lines from the
file instead of a terminal keyboard. The text file to be processed is called a "proce-
dure file". It contains one or more command lines that are identical to command
lines that are manually entered from the keyboard. This technique is sometimes
called "batch" or "background" processing.

If the program name specified on a shell command line can not be found in
memory or in the execution directory, shell will search the data directory for a
file with the desired name. If one is found, shell will automatically execute it as a
procedure file.

Execution of procedure files have a number of valuable applications. It can elim-
inate repetitive manual entry of commonly-used sequences of commands. It can
allow the computer to execute a lengthy series of programs "in the background"
while the computer is unattended or while the user is running other programs
"in the foreground".

In addition to redirecting the shell’s standard input to a procedure file, the stan-
dard output and standard error output can be redirected to another file which can
record output for later review or printing. This can also eliminate the sometimes-
annoying output of shell messages to your terminal at random times.

Here are two simple ways to use the shell to create another shell:

OS9: shell <procfile

OS9: procfile

Both do exactly the same thing: execute the commands of the file "procfile". To
run the procedure file in a "background" mode you simply add the ampersand
operator:

OS9: procfile&

OS-9 does not have any constraints on the number of jobs that can be simulta-
neously executed as long as there is memory available. Also, the procedure files
can themselves cause sequential or concurrent execution of additional procedure
files. Here’s a more complex example of initiating two processing streams with
redirection of each shell’s output to files:

OS9: proc1 T >>stat1& proc2 T >>stat2&

Note that the built-in command "T" (copy input lines to error output) was used
above. They make the output file contain a record of all lines executed, but with-
out useless "OS9" prompts intermixed. The "-x" built-in command can be used
if you do not want processing to stop if an error occurs. Note that the built-in
commands only affect the shell that executes them, and not any others that may
exist.

28

Chapter 4. Advanced Features of the Shell

4.7. Error Reporting
Many programs (including the shell) use OS-9’s standard error reporting func-
tion, which displays an error number on the error output path. The standard
error codes are listed in the Appendix of this manual. If desired, the "printerr"
command can be executed, which replaces the smaller, built-in error display rou-
tine with a larger (and slower) routine that looks up descriptive error messages
from a text file called "/dd/sys/errmsg". Once the "printerr" command has been
run it cannot be turned off. Also, its effect is system-wide.

Programs called by the shell can return an error code in the CPU’s "B" register
(otherwise B should be cleared) upon termination. This type of error, as well as
errors detected by the shell itself, will cause an error message to be displayed and
processing of the command line or procedure file to be terminated unless the "-x"
built-in command has been previously executed.

4.8. Running Compiled Intermediate Code Programs
Before the shell executes a program, it checks the program module’s language
type. If its type is not 6809 machine language, shell will call the appropriate run-
time system for that module. Versions of the shell supplied for various systems
are capable of calling different run-time systems. Most versions of shell call Ba-
sic09 when appropriate, and Level Two versions of shell can also call the Pascal
P-code interpreter (PascalN), or the CIS Cobol runtime system (RunC).

For example, if you wanted to run a Basic09 I-code module called "adventure",
you could type the command given below:

OS9: basic09 adventure

Or you could accomplish the same thing by typing the following:

OS9: adventure

4.9. Setting Up Timesharing System Procedure Files
OS-9 systems used for timesharing usually have a procedure file that brings the
system up by means of one simple command or by using the system "startup"
file. A procedure file which initiates the timesharing monitor for each terminal is
executed to start up the system. The procedure file first starts the system clock,
then initiates concurrent execution of a number of processes that have their I/O
redirected to each timesharing terminal.

Usually one TSMON command program is started up concurrently for each ter-
minal in the system. This is a special program which monitors a terminal for
activity. When a carriage return character is typed on any of these terminals, the
TSMON command initiates the LOGIN command program. If a user does not
enter a correct password or user number in three tries, the LOGIN command will
be aborted. Here’s a sample procedure file for a 4-terminal timesharing system
having terminals names "TERM", "T1", "T2", and "T3".

* system startup procedure file
echo Please Enter the Date and Time
setime </term
printerr
tsmon /t1&
tsmon /t2&
tsmon /t3&

NOTE: This LOGIN procedure will not work until a password file called
"/DD/SYS/PASSWORD" has been created. For more information, please see the
LOGIN command description.

The example above deserves special attention. Note that the "setime" command
has its input redirected to the system console "term", which is necessary because

29

Chapter 4. Advanced Features of the Shell

it would otherwise attempt to read the time information from its current standard
input path, which is the procedure file and not the keyboard.

30

Chapter 5. Multiprogramming and Memory Management

One of OS-9’s most extraordinary abilities is multiprogramming, which is some-
times called timesharing or multitasking. Simply states, OS-9 lets you computer
run more than one program at the same time. This can be a tremendous advan-
tage in many situations. For example, you can be editing one program while an-
other is being printed. Or you can use your Color Computer to control household
automation and still be able to use it for routine work and entertainment.

OS-9 uses this capability all the time for internal functions. The simple way for
you to do so is by putting a "&" character at the end of a command line which
causes the shell to run your command as a "background task".

The information presented in this chapter is intended to give you an insight into
how OS-9 performs this amazing feat. You certainly don’t have to know every
detail of how multiprogramming works in order to use OS-9, but a basic working
knowledge can help you discover many new ways to use your Color Computer.

In order to allow several programs to run simultaneously and without interfer-
ence, OS-9 must perform many coordination and resource allocation functions.
The major system resources managed by OS-9 are:

CPU Time
Memory
The input/output system

In order for the computer to have reasonable performance, these resources must
be managed in the most efficient manner possible. Therefore, OS-9 uses many
techniques and strategies to optimize system throughput and capacity.

5.1. Processor Time Allocation and Timeslicing
CPU time is a resource that must be allocated wisely to maximize the computer’s
throughput. It is characteristic of many programs to spend much unproductive
time waiting for various events, such as an input/output operation. A good ex-
ample is an interactive program which communicates with a person at a terminal
on a line-by line basis. Every time the program has to wait for a line of characters
to be typed or displayed, it (typically) cannot do any useful processing and would
waste CPU time. An efficient multiprogramming operating system such as OS-9
automatically assigns CPU time to only those programs that can effectively use
the, time.

OS-9 uses a technique called timeslicing which allows processes to share CPU time
with all other active processes. Timeslicing is implemented using both hardware
and software functions. The system’s CPU is interrupted by a real time clock
many (60 in the Color Computer) times each second. This basic time interval is
called a "tick", hence, the interval between ticks is a time slice. This technique
is called timeslicing because each second of CPU time is sliced up to be shared
among several processes. This happens so rapidly that to a human observer all
processes appear to execute continuously, unless the computer becomes over-
loaded with processing. If this happens, a noticeable delay in response to termi-
nal input may occur, or "batch" programs may take much longer to run than they
ordinarily do. At any occurrence of a tick, OS-9 can suspend execution of one
program and begin execution of another. The starting and stopping of programs
is done in a manner that does not affect the program’s execution. How frequently
a process is given time slices depends upon its assigned priority relative to the
assigned priority of other active processes.

The percentage of CPU time assigned to any particular process cannot be exactly
computed because there are dynamic variables such as time the process spends
waiting for I/O devices. It can be roughly approximated by dividing the process’s
priority by the sum of the priority numbers of all processes:

Process Priority
Process CPU Share = -------------------

31

Chapter 5. Multiprogramming and Memory Management

Sum of All Active
Process’ Priorities

5.2. Process States
The CPU time allocation system automatically assigns programs one of three
"states" that describe their current status. Process states are also important for
coordinating process execution. A process may be in one and only one state at
any instant, although state changes may be frequent. The states are:

ACTIVE: processes which can currently perform useful processing. These are the
only processes assigned CPU time.

WAITING: processes which have been suspended until another process termi-
nates. This state is used to coordinate execution of sequential programs. The shell,
for example, will be in the waiting state during the time a command program it
has initiated is running.

SLEEPING: processes suspended by self-request for a specified time interval or
until receipt of a "signal". Signals are internal messages used to coordinate con-
current processes. This is the typical state of programs which are waiting for in-
put/output operations.

Sleeping and waiting processes are not given CPU time until they change to the
active state.

5.3. Creation of New Processes
The sequence of operations required to create a new process and initially allocate
its resources (especially memory) are automatically performed by OS-9’s "fork"
function. If for any reason any part of the sequence cannot be performed the fork
is aborted and the prospective parent is passed an appropriate error code. The
most frequent reason for failure is unavailablity of required resources (especially
memory) or when the program specified to be run cannot be found. A process
can create many new processes, subject only to the limitation of the amount of
unassigned memory available.

When a process creates a new process, the creator is called the "parent process",
and the newly created process is called the "child process". The new child can
itself become a parent by creating yet another process. If a parent process creates
more than one child process, the children are called "siblings" with respect to each
other. If the parent/child relationship of all processes in the system is examined, a
hierarchical lineage becomes evident. In fact, this hierarchy is a tree structure that
resembles a family tree. The "family" concept makes it easy to describe relation-
ships between processes, and so it is used extensively in descriptions of OS-9’s
multiprogramming operations.

When the parent issues a fork request to OS-9, it must specify the following re-
quired information:

• A PRIMARY MODULE, which is the name of the program to be executed by
the new process. The program can already be present in memory, or OS-9 may
load it from a mass storage file having the same name.

• PARAMETERS, which is data specified by the parent to be passed to and used
by the new process. This data is copied to part of the child process’ memory
area. Parameters are frequently used to pass file names, initialization values,
etc. The shell, passes command line parameters this way.

The new process also "inherits" copies of certain of its parent’s properties. These
are:

• A USER NUMBER which is used by the file security system and is used to
identify all processes belonging to a specific user (this is not the same as the

32

Chapter 5. Multiprogramming and Memory Management

"process ID", which identifies a specific process) . This number is usually ob-
tained from the system password file when a user logs on. The system manager
always is user number zero.

• STANDARD INPUT AND OUTPUT PATHS: the three paths (input, output,
and error/status) used for routine input and output. Note that most paths
(files) may be shared simultaneously by two or more processes. The two cur-
rent working directories are also inherited.

• PROCESS PRIORITY which determines what proportion of CPU time the pro-
cess receives with respect to others.

As part of the fork operation, OS-9 automatically assigns:

• A PROCESS ID: a number from 1 to 255, which is used to identify specific
processes. Each process has a unique process ID number.

• MEMORY: enough memory required for the new process to run. Level Two
systems give each process a unique "address space". In Level One systems, all
processes share the single address space. A "data area", used for the program’s
parameters, variables, and stack is allocated for the process’ exclusive use. A
second memory area may also be required to load the program (primary mod-
ule) if it is not resident in memory.

To summarize, the following items are given to or associated with new processes:

• Primary Module (program module to be run)

• Parameter(s) passed from parent to child

• User Number

• Standard I/O paths and working directories

• Process Priority

• Process ID

• Memory

5.4. Basic Memory Management Functions
An important OS-9 function is memory management. OS-9 automatically allo-
cates all system memory to itself and to processes, and also keeps track of the
logical contents of memory (meaning which program modules are resident in
memory at any given time). The result is that you seldom have to be bothered
with the actual memory addresses of programs or data.

Within the address space, memory is assigned from higher addresses downward
for program modules, and from lower addresses upward for data areas, as shown
below:

+---------------------------+ highest address
! program modules !
! (RAM or ROM) !
! !
! - - - - - - - - - - - - - !
! !
! unused space !
! (RAM or empty) !
! !
! - - - - - - - - - - - - - !
! !
! data areas !
! (RAM) !
! !
+---------------------------+ lowest address (0)

33

Chapter 5. Multiprogramming and Memory Management

5.4.1. Loading Program Modules Into Memory
When performing a fork operation, OS-9’s first step is to attempt to locate the
requested program module by searching the "module directory", which has the
address of every module present in memory. The 6809 instruction set supports
a type of program called "reentrant code" which means the exact same "copy"
of a program can be shared by two or more different processes simultaneously
without affecting each other, provided that each "incarnation" of the program has
am independent memory area for its variables.

Almost all OS-9 family software is reentrant and can make most efficient use of
memory. For example, Basic09 requires 22K bytes of memory to load into. If a
request to run Basic09 is made, but another user (process) had previously caused
it to be loaded into memory, both processes will share the same copy, instead of
causing another copy to be loaded (which would use an additional 22K of mem-
ory). OS-9 automatically keeps track of how many processes are using each pro-
gram module and deletes the module (freeing its memory for other uses) when
all processes using the module have terminated.

If the requested program module is not already in memory, the name is used
as a pathlist (file name) and an attempt is made to load the program from mass
storage.

Every program module has a "module header" that describes the program and
its memory requirements. OS-9 uses this to determine how much memory for
variable storage should be allocated to the process (it can be given more mem-
ory by specifying an optional parameter on the shell command line). The module
header also includes other important descriptive information about the program,
and is an essential part of OS-9 operation at the machine language level. A de-
tailed description of memory modules and module headers can be found in the
"OS-9 System Programmer’s Manual".

Programs can also be explicitly loaded into memory using the "load" command.
As with fork, the program will actually be loaded only if it is not already in mem-
ory. If the module is not in memory, OS-9 will copy a candidate memory module
from the file into memory, verify the CRC, and then, if the module is not already
in the module directory, add the module to the directory. This process is repeated
until all the modules in the file are loaded, the 64K memory limit is exceeded, or
until a module with an invalid format is encountered. OS-9 always links to the
first module read from the file.

If the program module is already in memory, the load will proceed as described
above, loading the module from the specified file, verifying the CRC, and when
attempting to add the valid module to the module directory, noticing that the
module is already known, the load merely increments the known module’s link
count (the number of processes using the module.) The load command can be
used to "lock a program into memory. This can be useful if the same program is
to be used frequently because the program will be kept in memory continuously,
instead of being loaded repeatedly.

The opposite of "load" is the "unlink" command, which decreases a program mod-
ule’s link count by one. Recall that when this count becomes zero (indicating the
module in no longer used by any process), the module is deleted, e.g., its memory
is deallocated and its name is removed from the module directory. The "unlink"
command is generally used in conjunction with the "load" command (programs
loaded by fork are automatically unlinked when the program terminates).

Here is an example of the use of "load" and "unlink" to lock a program in mem-
ory. Suppose the "copy" command will be used five times. Normally, the copy
command would be loaded each time the "copy" command is called. If the "load"
command is used first, "copy" will be locked into memory first, for example:

OS9: load copy
OS9: copy file1 file1a
OS9: copy file2 file2a
OS9: copy file3 file3a
OS9: unlink copy

34

Chapter 5. Multiprogramming and Memory Management

It is important to use the "unlink" command after the program is no longer
needed, or the program will continue to occupy memory which otherwise could
be used for other purposes. Be very careful not to completely unlink modules
in use by any process! This will cause the memory used by the module to be
deallocated and its contents destroyed. This will certainly cause all programs
using the unlinked module to crash.

5.4.2. Loading Multiple Programs
Another important aspect of program loading is the ability to have two or more
programs resident in memory at the same time. This is possible because all OS-9
program modules are "position-independent code", or "PIC". PIC programs do
not have to be loaded into specific, predetermined memory addresses to work
correctly, and can therefore be loaded at different memory addresses at differ-
ent times. PIC programs require special types of machine language instructions
which few computers have. The ability of the 6809 microprocessor to use this type
of program is one of its most powerful features.

The "load" command can therefore be used two or more times (or a single file
may contain several memory modules), and each program module will be auto-
matically loaded at different, non-overlapping addresses (most other operating
systems write over the previous program’s memory whenever a new program
is loaded). This technique also relieves the user from having to be directly con-
cerned with absolute memory addresses. Any number of program modules can
be loaded until available system memory is full.

5.4.3. Memory Fragmentation
Even though PIC programs can be initially loaded at any address where free
memory is available, program modules cannot be relocated dynamically after-
wards, e.g., once a program is loaded it must remain at the address at which it was
originally loaded (however Level Two systems can "load" (map) memory resident
programs at different addresses in each process’ address space). This characteris-
tic can lead to a sometimes troublesome phenomenon called "memory fragmen-
tation". When programs are loaded, they are assigned the first sufficiently large
block of memory at the highest address possible in the address space. If a number
of program modules are loaded, and subsequently one or more modules which
are located in between other modules are "unlinked", several fragments of free
memory space will exist. The sum of the sizes of the free memory space may be
quite large, but because they are scattered, not enough space will exist in a single
block to load a program module larger than the largest free space.

The "mfree" command shows the location and size of each unused memory area
and the "mdir e" command shows the address, size, and link (use) count of each
module in the address space. These commands can be used to detect fragmen-
tation. Memory can usually be de-fragmemted by unlinking scattered modules
and reloading them. Make certain none are in use before doing so.

35

Chapter 5. Multiprogramming and Memory Management

36

Chapter 6. Use of the System Disk

Disk-based OS-9 systems use a system disk to load many parts of the operating
system during the system startup and to provide files frequently used during
normal system operations. Therefore, the system disk is generally kept in disk
drive zero ("/D0") when the system is running.

Two files used during the system startup operation, "OS9Boot" and "startup" must
reside in the system disk’s root directory. Other files are organized into three di-
rectories: CMDS (commands), DEFS (system-wide definitions), and SYS (other
system files). Other files and directories created by the system manager and/or
users may also reside on the system disk. These frequently include each user s
initial data directory.

6.1. The OS9Boot File
The file called "OS9Boot" loaded into RAM memory by the "bootstrap" routine
located in the OS-9 firmware. It includes file managers, device drivers and de-
scriptors, and any other modules which are permanently resident in memory. A
typical Microware OS-9 distribution disk’s "OS9Boot" file contains the following
modules:

OS9P2 OS-9 Kernel, Part 2

IOMan OS-9 Input/Output Manager

Init Initialization Data Module

RBF Random Block (disk) File Manager

SCF Sequential Character (terminal) File Manager

PipeMan Pipe File Manager

Piper Pipe Driver

Pipe Pipe Device Descriptor

CC3IO CoCo 3 Keyboard/Video Device Driver

WindInt CoCo 3 Graphics Co-Module

VDGInt CoCo 2 Compatible Graphics Co-Module

Term Terminal Device Descriptor

CC3Disk CoCo 3 Disk Driver

DD, D0, D1 Disk Device Descriptors

Printer Printer Device Driver

p Printer Device Descriptor

Clock Real-Time Clock Module

CC3Go System Startup Process

Users may create new bootstrap files which may include additional modules (see
"OS9Gen" command). Any module loaded as part of the bootstrap cannot be un-
linked and is stored in memory with a minimum of fragmentation. It may be
advantageous to include in the OS9Boot file any module used constantly during
normal system operation. This can be done with the OS9GEN command.

6.2. The SYS Directory
The directory "/d0/SYS" contains two important files:

password the system password file (see "login" command)

errmsg the error message file

37

Chapter 6. Use of the System Disk

These files (and the SYS directory itself) are not absolutely required to boot OS-
9, they are needed if "login", "tsmon", or "printerr" will be used. Users may add
other system-wide files of similar nature if desired.

6.3. The Startup File
The file "/d0/startup" is a shell procedure file which is automatically processed
immediately after system startup. The user may include in "startup" any legal
shell command line. Often this will include "setime" to start the system clock. If
this file is not present the system will still start correctly but the user must run
the SETIME command manually.

6.4. The CMDS Directory
The directory "/d0/CMDS" is the system-wide command object code directory,
which is normally shared by all users as their working execution directory. If
"shell" is not part of the "OS9Boot" file, it must be present in this directory. The
system startup process "sysgo" makes CMDS the initial execution directory.

6.5. The DEFS Directory
The directory "/d0/DEFS" is a directory that contains assembly language source
code files which contain common system-wide symbolic definitions, and are nor-
mally included in assembly language programs by means of the OS-9 Assem-
bler "use" directive. The presence and use of this directory is optional, but highly
recommended for any system used for assembly language programs. The files
commonly contained in this directory are:

OS9Defs main system-wide definition file

RBFDefs RBF file manager definition file

SCFDefs SCF file manager definition file

Systype System types definition file

6.6. Changing System Disks
The system disk is not usually removed while the system is running, especially on
multiuser systems. If it is, the "chx" and "chd" (if the working data directory was
on the system disk) commands should be executed to reset the working directory
pointers because the directories may be at different addresses on the new disk,
for example:

chx /d0/cmds
chd /d0

In general, it is unwise to remove a disk and replace it with another if any paths
are open to files resident on the disk. It is dangerous to exchange any disk if any
files on it are open in WRITE or UPDATE modes.

6.7. Making New System Disks
To make a system disk, the following steps must be performed:

1. The new disk must be formatted.

2. The "OS9Boot" file must be created and linked by the "OS9Gen" or "Cob-
bler" commands.

38

Chapter 6. Use of the System Disk

3. The "startup" file must be created or copied.

4. The CMDS and SYS directories and the files they contain must be copied.

Steps 2 through 4 may be performed manually, or automatically by any of the
following methods:

1. By a shell procedure file created by the user.

2. By a shell procedure file generated by the "dsave" command

3. By the "backup" command

39

Chapter 6. Use of the System Disk

40

Chapter 7. System Command Descriptions

This section contains descriptions for each of the command programs that are
supplied with OS-9. These programs are usually called using the shell, but can
be called from most other OS-9 family programs such as BASIC09, Interactive
Debugger, Macro Text Editor, etc. Unless otherwise noted, these programs are
designed to run as individual processes.

WARNING - ALTHOUGH MANY OS-9 COMMANDS MAY WORK ON LEVEL
ONE OR LEVEL TWO SYSTEMS, THERE ARE DIFFERENCES. TAKE CARE
NOT TO MIX COMMAND FILES FROM LEVEL ONE SYSTEMS ON LEVEL
TWO, OR THE REVERSE.

7.1. Formal Syntax Notation
Each command description includes a syntax definition which describes how the
command sentence can be constructed. These are symbolic descriptions that use
the following notation:

[] = Brackets indicate that the enclosed item(s) are optional.

{ } = Braces indicate that the enclosed item(s) can be either omitted
or repeated multiple times.

path = Represents any legal pathlist.

devname = Represents any legal device name.

nodname = Represents any legal memory module name.

procID = Represents a process number.

opts = One or more options defined in the command description.

arglist = a list of arguments (parameters).

text = a character string terminated by end-of-line.

NOTE: The syntax of the commands given does not include the shell’s built in op-
tions such as alternate memory size, I/O redirection, etc. This is because the shell
will filter its options out of the command line before it is passed to the program
being called.

7.2. Commands

ATTR

Name
ATTR— Change file security attributes

Synopsis

ATTR path [{ permission abbreviations }]

Description

This command is used to examine or change the security permissions of a file.
To enter the command, type "ATTR" followed by the pathlist for the file who’s
security permissions are to be changed, followed by a list of permissions which
are to be turned on or off. A permission is turned on by giving its abbreviation,
or turned off by preceding its abbreviation with a minus sign. Permissions not

41

Chapter 7. System Command Descriptions

explicitly named are not affected. If no permissions are given the current file at-
tributes will be printed. You can not change the attributes of a file which you do
not own (except for user zero, who can change the attributes of any file in the
system).

The file permission abbreviations are:

d = Directory file
s = Sharable file
r = Read permit to owner
w = Write permit to owner
e = Execute permit to owner

pr = Read permit to public
pw = Write permit to public
pe = Execute permit to public

The ATTR command may be used to change a directory file to a non-directory file
if all entries have been deleted from it. Since the DEL command will only delete
non-directory files, this is the only way a directory may be deleted. You cannot
change a non-directory file to a directory file with this command (see MAKDIR).

For more information see: 3.8, 3.8.1

Examples

attr myfile -pr -pw

attr myfile r w e pr rw pe

attr datalog
-s-wr-wr

BACKUP

Name
BACKUP— Make a backup copy of a disk

Synopsis

BACKUP [e] [s] [-v] [devname [devname]]

Description

This command is used to physically copy all data from one device to another.
A physical copy is performed sector by sector without regard to file structures.
In almost all cases the devices specified mun.t have the exact same format (size,
density, etc.) and must not have defective sectors.

If both device name are omitted the names "/d0" and "/d1" are assumed. If the
second device name is omitted, a single unit backup will be performed on the
drive specified.

The options are:

E = Exit if any read error occurs.
S = Print single drive prompt message.

42

Chapter 7. System Command Descriptions

-V = Do not verify.
#nK = more memory makes backup run faster

Examples

backup /D2 /D3

backup -V

OS9: backup

Ready to BACKUP from /D0 to /D1 ?: Y
MYDISK is being scratched
OK ?: Y
Number of sectors copied: $04D0
Verify pass
Number of sectors verified: $04D0
OS9:

Below is an example of a single drive backup. BACKUP will read a portion of
the source disk into memory, you remove the source disk and place the destina-
tion disk into the drive, BACKUP writes on the destination disk, you remove the
destination disk and place the source disk into the drive. This continues until the
entire disk has been copied. Giving BACKUP as much memory as possible will
cause fewer disk exchanges to be required.

For more information see: 1.1.2

OS9:backup /D0 #10k

Ready to BACKUP from /D0 to /D0 ?: Y
Ready DESTINATION, hit a key:
MYDISK is being scratched
OK ?: Y
Ready SOURCE, hit a key:
Ready DESTINATION, hit a key:
Ready SOURCE, hit a key:
Ready DESTINATION, hit a key:

(several repetitions)

Ready DESTINATION, hit a key:
Number of sectors copied: $4D0
Verify pass
Number of sectors verified: $4D0

BINEX

Name
BINEX — Convert Binary To S-Record File

Synopsis

BINEX path1 path2

43

Chapter 7. System Command Descriptions

Description

S-Record files are a type of text file that contains records that represent binary
data in hexadecimal character form. This Motorola-standard format is often di-
rectly accepted by commercial PROM programmers, emulators, logic analyzers
and similar devices that are interfaced RS-232 interfaces. It can also be useful
for transmitting files over data links that can only handle character-type data; or
to convert OS-9 assembler or compiler-generated programs to load on non-OS-9
systems.

BINEX converts "path1", an OS-9 binary format file, to a new file named "path2"
in S-Record format. If invoked on a non-binary load module file, a warning mes-
sage is printed and the user is asked if BINEX should proceed anyway. A "Y"
response means yes; any other answer will terminate the program. S-Records
have a header record to store the program name for informational purposes and
each data record has an absolute memory address which is not meaningful to
OS-9 since it uses position-independent-code. However, the S-Record format re-
quires them so BINEX will prompt the user for a program name and starting load
address. For example:

binex /d0/cmds/scanner scanner.S1
Enter starting address for file: $100
Enter name for header record: scanner

To download the program to a device such as a PROM programmer (for example
using serial port T1) type:

list scanner.S1 >/T1

BUILD

Name
BUILD — Build a text file from standard input

Synopsis

BUILD path

Description

This command is used to build short text files by copying the standard input
path into the file specified by path . BUILD creates a file according to the pathlist
parameter, then displays a "?" prompt to request an input line. Each line entered
is written to the output path (file). Entering a line consisting of a carriage return
only causes BUILD to terminate.

Example:

build small_file
build /p (copies keyboard to printer)

The standard input path may also be redirected to a file. Below is an example:

build <mytext /T2 (copies file "mytext" to terminal T2)

OS9: build newfile

44

Chapter 7. System Command Descriptions

? The powers of the OS-9
? operating system are truly
? fantastic.
? [RETURN]

OS9: list newfile

The powers of the OS-9
operating system are truly
fantastic.

CHD/CHX

Name
CHD/CHX— Change working data directory / Change working execution
directory

Synopsis

chd pathlist

chx pathlist

Description

These are shell "built in" commands used to change OS-9’s working data direc-
tory or working execution directory. Many commands in OS-9 work with user
data such as text files, programs, etc. These commands assume that a file is lo-
cated in the working data directory. Other OS-9 commands will assume that a
file is in the working execution directory.

NOTE: These commands do not appear in the CMDS directory as they are built-in
to the SHELL.

For more information see: 3.7, 3.7.2

Examples

chd /d1/PROGRAMS

chx ..

chx binary_files/test_programs

chx /D0/CMDS; chd /D1

45

Chapter 7. System Command Descriptions

CMP

Name
CMP— File Comparison Utility

Synopsis

cmp file1 file2

Description

Opens two files and performs a comparison of the binary values of the corre-
sponding data bytes of the files. If any differences are encountered, the file offset
(address) and the values of the bytes from each file are displayed in hexadecimal.

The comparison ends when end-of-file is encountered on either file. A summary
of the number of bytes compared and the number of differences found is then
displayed.

Examples

OS9: cmp red blue

Differences

byte #1 #2
======== == ==
00000013 00 01
00000022 B0 B1
0000002A 9B AB
0000002B 3B 36
0000002C 6D 65

Bytes compared: 0000002D
Bytes different: 00000005

OS9: cmp red red

Differences
None ...

Bytes compared: 0000002D
Bytes different: 00000000

COBBLER

Name
COBBLER— Make a bootstrap file

46

Chapter 7. System Command Descriptions

Synopsis

COBBLER device name

Description

COBBLER is used to create the "OS9Boot" file required on any disk from which
OS-9 is to be bootstrapped. The boot file will consist of the same modules which were
loaded into memory during the most recent boostrap. To add modules to the bootstrap
file use the "OS9Gen" command. COBBLER also writes the OS-9 kernel on the first
fifteen sectors of track 34, and excludes these sectors from the disk allocation map.
If any files are present on these sectors COBBLER will display an error message.

NOTE: The boot file must fit into one contiguous block on the mass-storage de-
vice. For this reason COBBLER is normally used on a freshly formatted disk. If
COBBLER is used on a disk and there is not a contiguous block of storage large
enough to hold the boot file, the old boot file may have been destroyed and OS-9
will not be able to boot from that disk until it is reformatted.

For more information see: 1.1.2, 6.1

Examples

OS9: cobbler /D1

CONFIG

Name
CONFIG— Configures an OS-9 system diskette

Synopsis

CONFIG

Description

CONFIG provides menus of all I/O options and all system commands. You select
the device drivers and commands you want to include on a new system diskette
from these menus. Selecting only the device drivers and commands you and your
system require lets you make the most efficient use of computer memory and
system diskette storage.

The CONFIG utility is on a separate CONFIG/BOOT Diskette. Make a copy of
this diskette using the OS-9 BACKUP command and use the copy as your work-
ing diskette. Keep the original CONFIG/BOOT Diskette in a safe place to use for
future backups. You can use the CONFIG/BOOT Diskette for booting OS-9 from
TRS-80/Tandy Color Computer Disk BASIC from Drive /D0.

CONFIG requires no initial parameters. You establish parameters during the op-
eration of CONFIG. Be sure that the execution directory is at /D0/CMDS before
executing the command.

Examples:

CONFIG [ENTER]

47

Chapter 7. System Command Descriptions

CONFIG executes and a prompt asks you to indicate whether you wish to use
one or two disk drives. Press [1] for single- or [2] for two-drive operation.

Next, CONFIG builds a list of the various devices from the MODULES directory.
When the list is complete, a screen menu appears. Use the up and down arrow
keys to move to a device. Then, press [S] to either select or exclude a particular
device. Press [S] once to display an X to the right of the selected device. Press [S]
again to erase the X. The device is selected only when the "X" appears. Informa-
tion about each device is available with a special help command. To display the
information on the current device (the device indicated by the right arrow [->]),
press [H].

If there are more than ten devices in a CONFIG menu, use [->] to move ahead
page-by-page and [<-] to move back.

The devices you can select are:

term32 The computer keyboard and standard TV display

term80 The computer keyboard and optional 80 column video display

d0 Disk Drive 0

d1 Disk Drive 1

d2 Disk Drive 2

d3 Disk Drive 3

h0_15 A 15 meg hard disk drive 0

h1_15 A 15 meg hard disk drive 1

h0_35 A 35 meg hard disk drive 0

h1_35 A 35 meg hard disk drive 1

p A printer using the RS-232 serial port

t1 A terminal port using the standard RS-232 port

t2 A terminal port using the optional RS-232 communications pak

t3 A terminal port using the optional RS-232 communications pak

m1 A modem

m2 A modem

ssc Speech/Sound Cartridge

To use your computer keyboard and video display, you must select one term. You
must select d0 as your first disk drive. Select d1, d2, and d3 for additional floppy
disk drives. Select /p to use a printer with OS-9, select ssc to use a Speech/Sound
Cartridge from a Multi-Pak slot, and so forth.

After selecting the devices you desire, press [D]. The screen displays, ARE YOU
SURE (Y/N) ? If you are satisfied with your selections, press [Y]. If you wish to
make further changes, press [N].

When the driver selection is complete, a screen prompt requests that you select
among the TRS-80/Tandy Color Computer terminal I/O subroutines. Select these
subroutines in the same manner that you selected the device drivers. You have
the following modules from which to make your selections:

CO32 A video output module for a 32 column TV display

CO80 A video output module for a 80 column video display

GRFO A graphics module for TV display

When choosing subroutine modules, you must select the video output module
that matches the terminal module you previously selected for your console de-
vice.

CONFIG builds a boot list from the selected devices and their associated drivers

48

Chapter 7. System Command Descriptions

and managers. "Bootlist" is created in the ROOT directory of Drive 0. CONFIG
next displays two clock options:

1 - 60Hz (American)
2 - 50Hz (European)

If you live in the United States, Canada, or other country with 60Hz electrical
power, press [1]. If you live in a country with 50Hz power, press [2].

If you have a single disk drive, a screen prompt asks you to swap diskettes and
press [C]. When asked to isnert the SOURCE diskette, insert the CONFIG/BOOT
Diskette. When asked to insert the DESTINATION diskette, insert the diskette on
which you wish to create the new OS-9 System.

If you have more than one drive, a screen prompt asks you to insert a blank
formatted diskette (the DESTINATION diskette) in /D1. The rest of the boot file
creation is automatic.

Following the boot file generation, a menu lets you select the commands you
wish to include on your system diskette. You have the following choices:

[N]o Commands, Stop Now - Do not add any commands
[B]asic Command Set - Adds the basic OS-9 commands
[F]ull COmmand Set - Add all OS-9 commands
[I]ndividually Select - Select desired commands one by one
[?] Receive Help - Get help on the command set

Press [N] if you want to create a boot file, but do not wish to add any commands
to the new system diskette. Use this option to create a new boot file on a diskette
on which you have prefviously copied the OS-9 system. If you have only one
disk drive, this procedure is quicker than using the CONFIG utility to complete
the entire system transfer, as less diskette swaps are required.

Press [B] if you wish to add a basic command set (the most commonly used com-
mands) to your new diskette. This selection does not copy the following:

1. Assembly language development tools, asm, debug, and edit and the
DEFS directory

2. Timesharing utilities, tsmon, login, and the SYS/motd and SYS/password
files

3. The system maintenance utilites, such as dsave, dcheck, and cobbler

Press [F] to copy all of the commands (an exact copy of the standard OS-9 system
diskette, with a new boot file).

Press [I] to individually select commands to copy on the new diskette. This option
displays a selection similar to the device selection screen. Again, press [S] to select
or exclude commands, and use the arrow keys to move among the commands in
the menu. Commands marked with an X are selected. If a command does not
have an X beside it, it is excluded on the new system diskette.

If you have a multi-drive system, a prompt appears asking you to insert your OS-
9 system diskette in /D0. Press the spacebar. The process finishes the CONFIG
operation and returns to OS-9.

If you have a single-drive system, you swawp diskettes during the final process.
This time, the SOURCE diskette is the OS-9 System Diskette, instead of the CON-
FIG/BOOT Diskette. The DESTINATION diskette is the new system diskette you
are creating. The number of swaps in this procedure, as well as in the boot file cre-
ation procedure, depends on the number of options you select.

It would be quicker and easier to use BACKUP to create a system disk, use CON-
FIG to create a new bootfile, then delete unwanted commands. However, this
process causes fragmentation of diskette space. Fragmentation results in slower
diskette access, and free memory is broken into segments that might not be large
enough for some OS-9 operations. CONFIG causes no fragmentation.

49

Chapter 7. System Command Descriptions

The MODULES directory of the CONFIG/BOOT diskette contains all the device
drivers and descriptors supported by OS-9. The filename extension describes the
type of file, as noted in the following table:

Extension Module Type

.dd Device Descriptor module

.dr Device Driver module

.io Input/Output subroutine module

.hp Help file

COPY

Name
COPY— Copy data from one path to another

Synopsis

COPY path path [-s]

Description

This command copies data from the first file or device specified to the second.
The first file or device must already exist, the second file is automatically created
if the second path is a file on a mass storage device. Data may be of any type and
is NOT modified in any way as it is copied.

Data is transferred using large block reads and writes until end-of-file occurs on
the input path. Because block transfers are used, normal output processing of
data does not occur on character-oriented devices such as terminals, printers, etc.
Therefore, the LIST command is preferred over COPY when a file consisting of
text is to be sent to a terminal or printer.

The "-s" option causes COPY to perform a single drive copy operation. The sec-
ond pathlist must be a full pathlist if "-s appears. COPY will read a portion of the
source disk into memory, you remove the source disk and place the destination
disk into the drive, enter a "C" whereupon COPY writes on the destination disk,
this process continues until the entire file is copied.

Using the shell’s alternate memory size modifier to give a large memory space
will increase speed and reduce the number of media exchanges required for sin-
gle drive copies.

Examples

copy file1 file2 #15k (copies file1 to file2)

copy /d1/joe/news /D0/peter/messages

copy /term /p (copies console to printer)

copy /d0/cat /d0/animals/cat -s #32k
Ready DESTINATION, hit C to continue: c
Ready SOURCE, hit C to continue: c
Ready DESTINATION, hit C to continue:c

50

Chapter 7. System Command Descriptions

CPUTYPE

Name
CPUTYPE— Identify the CPU

Synopsis

CPUTYPE

Description

Identifies the CPU as 6809 or 6309.

Examples

DATE

Name
DATE— Display system date and time

Synopsis

DATE [-t]

Description

This command will display the current system date, and if the "-t" option is given,
the current system time.

Examples

date -t

date -t >/p (Output is redirected to printer)

OS9: setime

yyyy/mm/dd hh:mm:ss
Time ? 2003/04/15 14:19:00

OS9:date

April 15, 2003

OS9:date -t

51

Chapter 7. System Command Descriptions

April 15, 2003 14:20:20

DCHECK

Name
DCHECK— Check Disk File Structure

Synopsis

DCHECK [-opts] devnam

Description

It is possible for sectors on a disk to be marked as being allocated but in fact are
not actually associated with a file or the disk’s free space. This can happen if a
disk is removed from a drive while files are still open, or if a directory which
still contains files is deleted (see 3.5). DCHECK is a diagnostic that can be used to
detect this condition, as well as the general integrity of the directory/file linkages.

DCHECK is given as a parameter the name of the disk device to be checked. Af-
ter verifying and printing some vital file structure parameters, DCHECK follows
pointers down the disk’s file system tree to all directories and files on the disk.
As it does so, it verifies the integrity of the file descriptor sectors, reports any dis-
crepancies in the directory/file linkages, and builds a sector allocation map from
the segment list associated with each file. If any file descriptor sectors (FDs) de-
scribe a segment with a cluster not within the file structure of the disk, a message
is reported like:

*** Bad FD segment ($xxxxxx-$yyyyyy) for file: pathlist

This indicates that a segment starting at sector xxxxxx and ending at sector
yyyyyy cannot really be on this disk. Because there is a good chance the entire
FD is bad if any of it’s segment descriptors are bad, the allocation map is not
updated for corrupt FDs.

While building the allocation map, DCHECK also makes sure that each disk clus-
ter appears only once and only once in the file structure. If this condition is de-
tected, DCHECK will display a message like:

Cluster $xxxxxx was previously allocated

This message indicates that cluster xxxxxx has been found at least once before in
the file structure. The message may be printed more than once if a cluster appears
in a segment in more than one file.

The newly created allocation map is then compared to the allocation map stored
on the disk, and any differences are reported in messages like:

Cluster $xxxxxx in allocation map but not in file structure
Cluster $xxxxxx in file structure but not in allocation map

The first message indicates sector number xxxxxx (hexadecimal) was found not
to be part of the file system, but was marked as allocated in the disk’s allocation
map. In addition to the causes mentioned in the first paragraph, some sectors may
have been excluded from the allocation map by the FORMAT program because
they were defective or they may be the last few sectors of the disk, the sum of
which was two small to comprise a cluster.

52

Chapter 7. System Command Descriptions

The second message indicates that the cluster starting at sector xxxxxx is part of
the file structure but is not marked as allocated in the disk’s allocation map. It is
possible that this cluster may be allocated to another file later, overwriting the
contents of the cluster with data from the newly allocated file. Any clusters that
have been reported as "previously allocated" by DCHECK as described above
surely have this problem.

Available DCHECK options are:

-w=path pathlist to directory for work files

-p print pathlists for questionable clusters

-m save allocation map work files

-b suppress listing of unused clusters

-s display count of files and directories only

-o print DCHECK’s valid options

The "-s" option causes DCHECK to display a count of files and directories only;
only FDs are checked for validity. The "-b" option suppresses listing of clusters
allocated but not in file structure. The "-p" option causes DCHECK to make a
second pass through the file structure printing the pathlists for any clusters that
DCHECK finds as "already allocated" or "in file structure but not in allocation
map". The "-w=" option tells DCHECK where to locate it’s allocation map work
file(s). The pathlist specified must be a FULL pathlist to a directory. The directory
"/D0" is used is used if "-w" is not specified. It is recommended that this pathlist
NOT be located on the disk being DCHECKed if the disk’s file structure integrity
is in doubt.

DCHECK builds its disk allocation map in a file called
pathlist /DCHECKppO, where pathlist is as specified by the "-w="
option and pp is the process number in hexadecimal. Each bit in this
bitmap file corresponds to a cluster of sectors on the disk. If the "-p" option
appears on the command line, DCHECK creates a second bitmap file
(pathlist /DCHECKpp1) that has a bit set for each cluster DCHECK finds
as "previously allocated" or "in file structure but not in allocation map" while
building the allocation map. DCHECK them makes another pass through the
directory structure to determine the pathlists for these questionable clusters.
These bitmap work files may be saved by specifying the "-m" option on the
command line.

Restrictions

For best results, DCHECK should have exclusive access to the disk being
checked. Otherwise DCHECK may be fooled if the disk allocation map changes
while it is building its bitmap file from the changing file structure. DCHECK
cannot process disks with a directory depth greater than 39 levels.

For more information see: 3.10, 3.5, FORMAT, 6.1 of OS-9 Systems Programmer’s
Manual

Examples

OS9: dcheck /d2 (workfile is on /D0)

Volume - ’My system disk’ on device /d2
$009A bytes in allocation map
1 sector per cluster
$0004D0 total sectors on media
Sector $000002 is start of root directory FD
$0010 sectors used for id, allocation map and root directory
Building allocation map work file...
Checking allocation map file...

53

Chapter 7. System Command Descriptions

’My system disk’ file structure is intact
1 directory
2 files

OS9: dcheck -mpw=/d2 /d0
Volume - ’System disk’ on device /d0
$0046 bytes in allocation map
1 sector per cluster
$00022A total sectors on media
Sector $000002 is start of root directory FD
$0010 sectors used for id, allocation map and root directory
Building allocation map work file...
Cluster $00040 was previously allocated
*** Bad FD segment ($111111-$23A6F0) for file: /d0/test/junky.file
Checking allocation map file...
Cluster $000038 in file structure but not in allocation map
Cluster $00003B in file structure but not in allocation map
Cluster $0001B9 in allocation map but not in file structure
Cluster $0001BB in allocation map but not in file structure

Pathlists for questionable clusters:
Cluster $000038 in path: /d0/OS9boot
Cluster $00003B in path: /d0/OS9boot
Cluster $000040 in path: /d0/OS9boot
Cluster $000040 in path: /d0/test/double.file

1 previously allocated clusters found
2 clusters in file structure but not in allocation map
2 clusters in allocation map but not in file structure
1 bad file descriptor sector

’System disk’ file structure is not intact
5 directories
25 files

DEBUG

Name
DEBUG— Interactive Debugger

Synopsis

DEBUG

Description

Interactive Debugger.

Command Summary

[SPACEBAR]expression Evaluate; display in hexadecimal and decimal
form

. Display dot address and contents

.. Restore last dot address; display address and
contents

54

Chapter 7. System Command Descriptions

.expression set dot to result of expression; display address
and contents

=expression Set memory at dot to result of expression

- Decrement dot; display address and contents

[ENTER] Increment dot; display address and contents

: Display all registers’ contents

:register Display the specified register’s contents

:register expression Set register to the result of expression

E module-name Prepare for execution

G Go to the program

G expression Goto the program at the address specified by
the result of expression

L module-name Link to the module named; display address

B Display all breakpoints

B expression Set a breakpoint at the result of the expression

K Kill all breakpoints

K expression Kill the breakpoint at address specified by
expression

M expression1 expression2 Display memory dump in tabular form

C expression1 expression2 Clear and test memory

S expression1 expression2 Search memory for pattern

$ command Call OS-9 shell with optional command

Q Quit (exit) Debug

DED

Name
DED— Disk Editor

Synopsis

DED pathlist

Description

dEd is a screen-oriented disk editor utility. It was originally conceived as a floppy
disk editor, so the display is organized around individual sectors. It performs
most of the functions of Patch, from Computerware, but is faster, more compact,
and screen-oriented rather than line-oriented. Individual files or the disk itself
(hard, floppy, ram) can be examined and changed, sectors can be written to an
output file, and executable modules can be located, linked to and verified. With
simple changes, it will run on any CoCo Level I OS-9 and possibly others (CoCo
Level II OS-9).

To use, type:

dEd pathlist

55

Chapter 7. System Command Descriptions

where <pathlist> is of the form: filename or dirname or /path/filename or /D0@
(edits entire disk)

dEd will read in and display the first 256 bytes in the file (disk). This is Logical
Sector Number (LSN) zero. You move through the file sector (LSN) by sector
using the up and down arrow keys. The current LSN number is displayed in Hex
and Decimal in the upper left corner of the screen. If the disk itself was accessed
(by appending ’@’ to it’s name when dEd was called), the LSN is the disk sector
number. If an individual file is being editted, however, the LSN displayed refers
to the file, not to the disk. All numbers requested by dEd must be in Hex format.
All commands are accessed by simply pressing the desired key.

DEL

Name
DEL— Delete a file

Synopsis

DEL [-x] path {path } [-x]

Description

This command is used to delete the file(s) specified by the pathllst(s). The user
must have write permission for the file(s). Directory files cannot be deleted unless
their type is changed to non-directory: see the "ATTR" command description.

If the -x option appears, the current execution directory is assumed.

For more information see: 3.5, 3.8.1

Examples

del test_program old_test_program

del /D1/number_five

OS9:dir /D1

Directory of /D1 14:29:46
myfile newfile

OS9:del /D1/newfile
OS9:dir /D1

Directory of /D1 14:30:37
myfile

OS9:del myprog -x
OS9:del -x CMDS.SUBDIR/file

56

Chapter 7. System Command Descriptions

DELDIR

Name
DELDIR — Delete All Files In a Directory System

Synopsis

DELDIR directory name

Description

This command is a convenient alternative to manually deleting directories and
files they contain. It is only used when all files in the directory system are to be
deleted.

When DELDIR is run, it prints a prompt message like this:

OS9: deldir OLDFILES
Deleting directory file.
List directory, delete directory, or quit ? (l/d/q)

An "l" response will cause a "dir e" command to be run so you can have an op-
portunity to see the files in the directory before they are deleted.

A "d" response will initiate the process of deleting files.

A "q" response will abort the command before action is taken.

The directory to be deleted may include directory files, which may themselves
include directory files, etc. In this case, DELDIR operates recursively (e.g., it calls
itself) so all lower-level directories are deleted as well. In this case the lower-level
directories are processed first.

You must have correct access permission to delete all files and directories encoun-
tered. If not, DELDIR will abort upon encountering the first file for which you do
not have write permission.

The DELDIR command automatically calls the DIR and ATTR commands, so they
both must reside in the current execution directory.

DEVS

Name
DEVS— Show device table entries

Synopsis

DEVS

Description

Devs displays a list of the system’s device table. The device table contains an
entry for each active device known to OS-9. devs does not display information

57

Chapter 7. System Command Descriptions

for uninitialized devices. The devs display header lists the system name, the OS-
9 version number, and the maximum number of devices allowed in the device
table.

Each line in the devs display contains five fields:

Name Description

Device Name of the device descriptor

Driver Name of the device driver

File Mgr Name of the file manager

Data Ptr Address of the device driver’s static
storage

Links Device use count

Note: Each time a user executes a chd to an RBF device, the use count of that device
is incremented by one. Consequently, the Links field may be artificially high.

DMODE

Name
DMODE— Disk descriptor Editor

Synopsis

DMODE [devicename | -filename] [options]

Description

This new version allows any combination of upper or lower case options to be
specified.

Also, current parameters are displayed with a "$" preceding to remind the user
that the values are HEXADECIMAL.

Options may be prefixed with a "$". It is simply ignored.

Examples

Typical DMODE output:

OS9: dmode /dd {enter}

drv=$00 stp=$00 typ=$80 dns=$01 cyl=$0334 sid=$06
vfy=$00 sct=$0021 tos=$0021 ilv=$00 sas=$20

Now, let’s say we want to change the number of cylinders this descripter shows.
The following command lines would all be valid and accepted by the new
DMODE:

OS9: dmode /dd CYL=276
-or- dmode /dd Cyl=$276
-or- dmode /dd cYL=276

58

Chapter 7. System Command Descriptions

Lastly, you may now specify either "TOS" or "T0S" to setup the number of sectors
per track in track zero. Example:

OS9: dmode /dd tos=21
-or- dmode /dd t0s=21

DIR

Name
DIR — Display the names of files contained in a directory

Synopsis

DIR [-e] [-x] [path]

Description

Displays a formatted list of files names in a directory file on. the standard output
path. If no parameters are given, the current data directory is shown. If the "x"
option is given, the current execution directory is shown. If a pathlist of a directory
file is given, it is shown.

If the "e" option is included, each file’s entire description is displayed: size, ad-
dress, owner, permissions, date and time of last modification.

For more information see: 1.0.3, 3.4, and 3.8.1

Examples

dir (display data directory)

dir -x (display execution directory)

dir -x -e (display entire description of execution dir)

dir .. (display parent of working data directory)

dir newstuff (display newstuff directory)

dir -e test_programs (display entire description of "test.programs)

DISASM

Name
DISASM— OS9 Module Disassembler

59

Chapter 7. System Command Descriptions

Synopsis

DISASM [-m module name | filename] [options]

Description

Disasm was written to hack apart OS9 system modules,command modules, file
managers and device drivers/descriptors either from memory or disk. Unlike
most other disassemblers,DISASM is a two pass disassembler, creating output
using only referenced labels. This output can be redirected to a file and (after
modifications if desired) then re-assembled.

Disasm provides completely commented disassembly of Device Descriptors...
very useful for building a customized boot file.

Options

disasm -m module name

will link to module in memory - if not found,will load module from exec
directory and then link to it...after disassembly,it will attempt to unlink the
module.

disasm pathlist/module name

will ’read’ the module from the specified path without loading.

other options:

o = display line number,address,object code & source code... useful for hard
to crack modules with data embedded in the middle.

x = look for module in execution directory.

ANY combination of options is allowed (upper or lower case) but they *must*
immediately follow the ’-’ and there must be no spaces separating the options.

OS9 Level I Users

by changing relative address $17 from $64 to $30 will cause the output source to
reference /d0/defs instead of /dd/defs

also,if you are not using a driver which supports level II display codes, you
MUST change relative address $15 from 01 to 00 to avoid problems in the event
of an error message being printed out.

DISPLAY

Name
DISPLAY — Display Converted Characters

Synopsis

DISPLAY hex {hex }

60

Chapter 7. System Command Descriptions

Description

Display reads one or more hexadecimal numbers given as parameters, converts
them to ASCII characters, and writes them to the standard output. It is commonly
used to send special characters (such as cursor and screen control codes) to ter-
minals and other I/O devices.

Examples

display 0C 1F 02 7F

display 15 >/p (sends "form feed" to printer)

OS9: display 41 42 43 44 45 46
ABCDEF

DSAVE

Name
DSAVE— Generate procedure file to copy files

Synopsis

DSAVE [-opts] [devname] [path]

Description

Dsave is used to backup or copy all files in one or more directories. It is unlike
most other commands in that it does NOT directly affect the system, rather, it
generates a procedure file which is executed later to actually do the work.

When DSAVE is executed, it writes copy commands to standard output to copy
files from the current data directory on devname (the default is /D0) to the di-
rectory specified by path . If path does not appear, the copy is performed to the
current data directory at the time the DSAVE procedure file is executed. If DSAVE
encounters a directory file, it will automatically include "makdir" and "chd" com-
mands in the output before generating copy commands for files in the subdirec-
tory. Since DSAVE is recursive in operation, the procedure file will exactly repli-
cate all levels of the file system from the current data directory downward (such
a section of the file system is called a "subtree").

If the current working directory happens to be the root directory of the disk,
DSAVE will create a procedure file that will backup the entire disk file by file.
This is useful when it is necessary to copy many files from different format disks,
or from floppy disk to a hard disk.

Available DSAVE options are:

-b make output disk a system disk by using source disk’s
"OS9Boot" file,. if present.

-b=path make output disk a system disk using path as source for the
"OS9Boot" file.

-i indent for directory levels

-L do not process directories below the current level

61

Chapter 7. System Command Descriptions

-m do not include "makdir" commands in procedure file

-sinteger set copy size parameter to integer K

For more information see: 1.1.3

Examples

Example which copies all files on "d2" to "d1":

chd /d2 (select "from" directory)
dsave /d2 >/d0/makecopy (make procedure file "makecopy")
chd /d1 (select "to" directory)
/d0/makcopy (run procedure file)

chd /d0/MYFILES/STUFF
dsave -is32 /d0 /d1/BACKUP/STUFF >saver
/d0/MYFILES/STUFF/saver

DUMP

Name
DUMP— Formatted File Data Dump in Hexadecimal and ASCII

Synopsis

DUMP [path]

Description

This command produces a formatted display of the physical data contents of the
path specified which may be a mass storage file or any other I/O device. If a path-
list is omitted, the standard input path is used. The output is written to standard
output. This command is commonly used to examine the contents of non-text
files.

The data is displayed 16 bytes per line in both hexadecimal and ASCII character
format. Data bytes that have non-displayable values are represented by periods
in the character area.

The addresses displayed on the dump are relative to the beginning of the file.
Because memory modules are position-independent and stored on files exactly
as they exist in memory, the addresses shown on the dump correspond to the
relative load addresses of memory-module files.

Examples

DUMP (display keyboard input in hex)
DUMP myfile >/P (dump myfile to printer)
DUMP shortfile

62

Chapter 7. System Command Descriptions

Sample Output

Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
---- ---- ---- ---- ---- ---- ---- ---- ---- ----------------
0000 87CD 0038 002A P181 2800 2E00 3103 FFE0 .M.8.*q.(...1..’
0010 0418 0000 0100 0101 0001 1808 180D 1B04
0020 0117 0311 0807 1500 002A 5445 S2CD 5343*TERMSC
0030 C641 4349 C10E 529E FACIA.R.

^ ^ ^

starting data bytes in hexadecimal data bytes in
address format ASCII format

ECHO

Name
ECHO— Echo text to output path

Synopsis

ECHO text

Description

This command echoes its argument to the standard output path. It is typically
used to generate messages in shell procedure files or to send an initialization
character sequence to a terminal. The text should not include any of the punctu-
ation characters used by the shell.

Examples

echo >/T2 Hello John how’s it going & (echo to T2)

echo >/term ** warning ** disk about to be scratched 1

echo >/p Listing of Transaction File; list trans >/p

OS9: echo Here is an important message!
Here is an important message!

EX

Name
EX— Execute program as overlay

63

Chapter 7. System Command Descriptions

Synopsis

EX module name [modifiers] [parameters]

Description

This a shell built-in command that causes the process executing the shell to start
execution of another program. It permits a transition from the shell to another
program without creating another process, thus conserving system memory.

This command is often used when the shell is called from another program to
execute a specific program, after which the shell is not needed. For instance, ap-
plications which only use BASIC09 need not waste memory space on SHELL.

The "ex" command should always be the last command on a shell input line be-
cause any command line following will never be processed.

NOTE: Since this is a built-in SHELL command, it does not appear in the CMDS
directory.

For more information see: 4.5, 4.6, 4.9

Examples

ex BASIC09

tsmon /t1&; tsmon /t2&; ex tsmon /term

EXBIN

Name
EXBIN — Convert S-Record To Binary File

Synopsis

EXBIN path2 path1

Description

S-Record files are a type of text file that contains records that represent binary
data in hexadecimal character form. This Motorola-standard format is often di-
rectly accepted by commercial PROM programmers, emulators, logic analyzers
and similar devices that are interfaced RS-232 interfaces. It can also be useful
for transmitting files over data links that can only handle character-type data; or
to convert OS-9 assembler or compiler-generated programs to load on non-OS-9
systems.

"Path1" is assumed to be an S-Record format text file which EXBIN converts to
pure binary form on a new file called "path2". The load addresses of each data
record must describe continguous data in ascending order.

EXBIN does not generate or check for the proper OS-9 module headers or CRC
check value required to actually load the binary file. The IDENT or VERIFY com-
mands can be used to check the validity of the modules if they are to be loaded
or run. Example:

64

Chapter 7. System Command Descriptions

exbin program.S1 cmds/program

EXMODE

Name
EXMODE— Examine or Change Device Initialization Mode

Synopsis

EXMODE devname [arglist]

Description

EXMODE is an enhanced verison of the XMODE utility, and is useful for
changing initialization parameters specific to CoCo 3 window descriptors and
enhanced ACIA device descriptors.

EXMODE is very similar to the TMODE command. TMODE only operates on
open paths so its effect is temporary. EXMODE actually updates the device de-
scriptor so the change persists as long as the computer is running, even if paths
to the device are repetitively opened and closed. If EXMODE is used to change
parameter(s) and the COBBLER program is used to make a new system disk, the
changed parameter will be permanently reflected on the new system disk.

EXMODE requires a device name to be given. If no arguments are given, the
present values for each parameter are displayed, otherwise, the parameter(s)
given in the argument list are processed. Any number of parameters can be given,
and are separated by spaces or commas.

EXMODE Parameter Names

upc Upper case only. Lower case characters are automatically
converted to upper case.

-upc Upper case and lower case characters permitted (default).

bsb Erase on backspace: backspace characters echoed as a
backspace-space-backspace sequence (default).

-bsb no erase on backspace: echoes single backspace only

bsl Backspace over line: lines are "deleted" by sending
backspace-space-backspace sequences to erase the same line (for
video terminals) (default).

-bsl No backspace over line: lines are "deleted" by printing a new
line sequence (for hard-copy terminals). echo Input characters
"echoed" back to terminal (default)

-echo No echo

lf Auto line feed on: line feeds automatically echoed to terminal on
input and output carriage returns (default).

-lf Auto line feed off.

pause Screen pause on: output suspended upon full screen. See "pag"
parameter for definition of screen size. Output can be resumed
by typing any key.

-pause Screen pause mode off.
65

Chapter 7. System Command Descriptions

null=n Set null count: number of null ($00) characters transmitted after
carriage returns for return delay. The number is decimal, default
= 0.

pag=n Set video display page length to n (decimal) lines. Used for
"pause" mode, see above.

bsp=h Set input backspace character. Numeric value of character in
hexadecimal. Default = 08.

bse=h Set output backspace character. Numeric value of character in
hexadecimal. Default = 08.

del=h Set input delete line character. Numeric value of character in
hexadecimal. Default = 18.

bell=h Set bell (alert) output character. Numeric value of character in
hexadecimal. Default = 07

eor=h Set end-of-record (carriage return) input character. Numeric
value of character in hexadecimal. Default = 0D

eof=h Set end-of-file input character. Numeric value of character in
hexadecimal. Default 1B.

type=h ACIA initialization value: sets parity, word size, etc. Value in
hexadecimal. Default 15

reprint=h Reprint line character. Numeric value of character in
hexadecimal.

dup=h Duplicate last input line character. Numeric value of character in
hexadecimal.

psc=h Pause character. Numeric value of character in hexadecimal.

abort=h Abort character (normally control C). Numeric value of
character in hexadecimal.

quit=h Quit character (normally control E). Numeric value of character
in hexadecimal.

baud=d Set baud rate for software-controllable interface. Numeric code
for baud rate: 0=110 1=300 2=600 3=1200 4=2400 5=4800 6=9600
7=19200

Examples

exmode /TERM -upc lf null=4 bse=1F pause

exmode /T1 pag=24 pause bsl -echo bsp=8 bsl=C

exmode /P baud=3 -if

FORMAT

Name
FORMAT— Initialize disk media

Synopsis

FORMAT devname

66

Chapter 7. System Command Descriptions

Description

This command is used to physically initialize, verify, and establish an initial file
structure on a disk. All disks must be formatted before they can be used on an
OS-9 system.

NOTE: If the diskette is to be used as a system disk, "OS9gen" or "cobbler" must
be run to create the bootstrap after the disk has been formatted.

The formatting process works as follows:

1. The disk surface is physically initialized and sectored.

2. Each sector is read back and verified. If the sector fails to verify after sev-
eral attempts, the offending sector is excluded from the initial free space
on the disk. As the verification is performed, track numbers are displayed
on the standard output device.

3. The disk allocation map, root directory, and identification sector are writ-
ten to the first few sectors of track zero. These sectors cannot be defective.

FORMAT will prompt for a disk volume name, which can be up to 32 characters
long and may include spaces or punctuation. This name can later be displayed
using the FREE command.

For more information see: 3.10

FREE

Name
FREE— Display free space remaining on mass-storage device

Synopsis

FREE devname

Description

This command displays the number of unused 256-byte sectors on a device which
are available for new files or for expanding existing files. The device name given
must be that of a mass-storage multifile device. "Free" also displays the disk’s
name, creation date, and cluster size.

Data sectors are allocated in groups called "clusters". The number of sectors per
cluster depends on the storage capacity and physical characteristics of the specific
device. This means that small amounts of free space may not be divisible into as
many files. For example, if a given disk system uses 8 sectors per cluster, and
a "free" command shows 32 sectors free, a maximum of four new files could be
created even if each has only one cluster.

For more information see: 3.10

Examples

OS9: free
BACKUP DATA DISK created on: 80/06/12
Capacity: 1,232 sectors (1-sector clusters)
1,020 free sectors, largest block 935 sectors

OS9: free /D1

67

Chapter 7. System Command Descriptions

OS-9 Documentation Disk created on: 81/04/13
Capacity: 1,232 sectors (1-sector clusters)
568 Free sectors, largest block 440 sectors

HELP

Name
HELP— Displays the usage and syntax of OS-9 commands.

Synopsis

HELP [command - the command for which you want syntax help.
Include as many command names in one HELP line as you wish.
The proper form and syntax appears for each valid command you
include.]

Notes

To use HELP, first copy Cmds.hp from the SYS directory of the CONFIG/BOOT
Diskette to the SYS directory of your system diskette. Next, copy HELP from the
CMDS directory of the CONFIG/BOOT Diskette to the CMDS directory of your
system diskette as follows:

Procedure for one disk drive:

1. With OS-9 booted and the system diskette in your drive, type:

LOAD COPY [ENTER]

2. Replace the system diskete with the CONFIG/BOOT Diskette and type:

COPY /D0/SYS/CMDS.HP /D0/SYS/CMDS.HP -S #30K [ENTER]

3. Exchange the two diskettes as requested by the screen prompts until the pro-
cess is complete.

4. Again, place the CONFIG/BOOT DIskette int he drive, and type:

COPY /D0/CMDS/help /D0/CMDS/help -S #30K [ENTER]

5. Swap diskettes as requested until the process is complete.

Procedure for two disk drives

1. With OS-9 booted, place the CONFIG/BOOT Diskette in Drive 1. Be sure the
system diskette is in Drive 0.

2. Type:

COPY /D1/SYS/CMDS.HP /D0/SYS/CMDS.HP [ENTER]

3. When the first copy is complete, type:

COPY /D1/CMDS/help /D0/CMDS/help [ENTER]

Cmds.hp is a data file, not a text file, and you cannot successfully display it on
your screen or edit it with a standard text editor. It contains help for standard
OS-9 commands.

68

Chapter 7. System Command Descriptions

HELP displays the form and syntax of the specified command. If you use a non-
standard command name, a screen display tells you that help is not available for
that command.

Examples:

HELP BACKUP [ENTER]
BACKUP [e][s][-v][dev][dev]
Copies all data from one device to another

HELP ME [ENTER]
ME Help not available

HELP [ENTER]
HELP [command name][...]

IDENT

Name
IDENT — Print OS-9 module identification

Synopsis

IDENT [-opts] path [-opts]

Description

This command is used to display header information from OS-9 memory mod-
ules. IDENT displays the module size, CRC bytes (with verification), and for pro-
gram and device driver modules, the execution offset and the permanent stor-
age requirement bytes. IDENT will print and interpret the type/language and
attribute/revision bytes. In addition, IDENT displays the byte immediately fol-
lowing the module name since most Microware-supplied modules set this byte
to indicate the module edition.

IDENT will display all modules contained in a disk file. If the "-m" option ap-
pears, path is assumed to be a module in memory.

If the "-v" option is specified, the module CRC is not verified.

The "-x" option implies the pathlist begins in the execution directory.

The "-s" option causes IDENT to display the. following module information on a
single line:

Edition byte (first byte after module name)
Type/Language byte
Module CRC
A "." if the CRC verifies correctly, "?" if incorrect. (IDENT will leave this field blank if the "-v" option appears.)
Module name

Examples

OS9: ident -m ident
Header for: Ident <Module name>
Module size: $06A5 #1701 <Module size>
Module CRC: $1CE78A (Good) <Good or Bad>
Hdr parity: $8B <Header parity>
Exec. off: $0222 #546 <Execution offset>

69

Chapter 7. System Command Descriptions

Data size: $0CA1 #3233 <Permanent storage requirement>
Edition: $05 #5 <First byte after module name>
Ty/La At/Rv: $11 $81 <Type/Language Attribute/Revision>
Prog mod, 6809 obj, re-en <Module type, Language, Attribute>

OS9: ident /d0/os9boot -s
1 $C0 $A366DC . OS9p2

83 $C0 $7FC336 . Init
1 $11 $39BA94 . SysGo
1 $C1 $402573 . IOMan
3 $D1 $EE937A . REF

82 $F1 $526268 . D0
82 $F1 $D65245 . D1
82 $F1 $E32FFE . D2

1 $D1 $F944D7 . SCF
2 $E1 $F9FE37 . ACIA

83 $F1 $765270 . TERM
83 $F1 $B4396C . T1
83 $F1 $63B73B . T2
83 $F1 $0F9B78 . T3
83 $F1 $F83EB9 . T4
83 $F1 $D6DD9A . T5

3 $E1 $3EE015 . PIA
83 $F1 $12A43B . P

2 $D1 $BBC1EE . PipeMan
2 $E1 $5B2B56 . Piper

80 $F1 $CC06AF . Pipe
2 $C1 $248B2C . Clock
^ ^ ^ ^ ^
| | | | |
| | | | Module name
| | | CRC check " " if -v, "." if OK, "?" if bad
| | CRC value
| Type/Language byte
Edition byte (first byte after name)

INIZ

Name
INIZ — Initialize a device.

Synopsis

INIZ [devicename [...]]

Description

Links the specified device to OS-9, places the device addres in a new device ta-
ble entry, allocates the memory needed by the device driver, and calls the device
driver initialization routine. If the device is already installed, INIZ does not reini-
tialize it.

70

Chapter 7. System Command Descriptions

Options:

devicename

is the name of the device drivere you want to initialize. Specify as many
device drivers as you wish with one INIZ command.

Notes:

You can use Iniz in the startup file or at the system startup to initialize devices
and allocate their static storage at the top of memory (to reduce memory frag-
mentation).

Example:

INIZ P T2 [ENTER]

initializes the P (printer) and T2 (terminal 2) devices.

IRQS

Name
IRQS — Show interrupt polling table

Synopsis

IRQS

Description

Irqs displays a list of the system’s IRQ polling table. The IRQ polling table con-
tains a list of the service routines for each interrupt handler known by the system.

The irqs display header lists the system name, the OS-9 version number, the max-
imum number of devices allowed in the device table, and the maximum number
of entries in the IRQ table.

KILL

Name
KILL — Abort a process

Synopsis

KILL procID

71

Chapter 7. System Command Descriptions

Description

This shell "built in" command sends an "abort" signal to the process having the
process ID number specified. The process to be aborted must have the same user
ID as the user that executed the command. The "procs" command can be used to
obtain the process ID numbers.

NOTE: If a process is waiting for I/O, it may not die until it completes the current
I/O operation, therefore, if you KILL a process and the PROCS command shows
it still exists, it is probably waiting for receive a line of data from a terminal before
it can die. Since this is a built-in SHELL command, it does not appear in the
CMDS directory. For more information see: 4.5, 5.2, PROCS

Examples

kill 5

kill 22

OS9: procs

User # Id pty state Mem Primary module
----- --- --- -------- --- --------------

20 2 0 active 2 Shell <TERM
20 1 0 waiting 1 Sysgo <TERM
20 3 0 sleeping 20 Copy <TERM

OS9: kill 3
OS9: procs

User # Id pty state Mem Primary module
----- --- --- -------- --- --------------

20 2 0 active 2 Shell <TERM
20 1 0 waiting 1 Sysgo <TERM

OS9:

LINK

Name
LINK — Link module into memory

Synopsis

LINK memory module name

Description

This command is used to "lock" a previously loaded module into memory. The
link count of the module specified is incremented by one each time it is "linked".
The "unlink" command is used to "unlock" the module when it is no longer
needed.

For more information see: 5.4, 5.4.1, 5.4.2, 5.4.3

72

Chapter 7. System Command Descriptions

Examples

OS9: LINK edit

OS9: LINK myprogram

LIST

Name
LIST — List the contents of a text file

Synopsis

LIST path { path }

Description

This command copies text lines from the path(s) given as parameters to the stan-
dard output path. The program terminates upon reaching the end-of-file of the
last input path. If more than one path is specified, the first path will be copied to
standard output, the second path will be copied next, etc.

This command is most commonly used to examine or print text files.

For more information see: 2.3, 3.9.2

Examples

list /d0/startup >/P & (output is redirected to printer)

list /D1/user5/document /d0/myfile /d0/Bob/text

list /TERM >/p (copy keyboard to printer - use
"escape" key to terminate input)

OS9: build animals
? cat
? cow
? dog
? elephant
? bird
? fish
? [RETURN]

OS9: list animals
cat
cow
dog
elephant
bird
fish

73

Chapter 7. System Command Descriptions

LOAD

Name
LOAD— Load module(s) from file into memory

Synopsis

LOAD path

Description

The path specified is opened and one or more modules is read from it and loaded
into memory. The names of the modules are added to the module directory. If
a module is loaded that has the same name and type as a module already in
memory, the module having the highest revision level is kept.

For more information see: 3.9.4, 5.4.1, 5.4.2

Examples

load new_program

OS9:mdir

Module Directory at 13:36:47
DCB4 D0 D1 D2 D3
OS9P2 INIT OS9 IOMAN REF
SCF ACIA TERM T1 T2
T3 P PIA CDS H1
Sysgo Clock Shell Tsmon Copy
Mdir

OS9:load edit
OS9:mdir

Module Directory at 13:37:14
DCB4 D0 D1 D2 D3
OS9P2 INIT OS9 IOMAN REF
SCF ACIA TERM T1 T2
T3 P PIA CDS H1
Sysgo Clock Shell Tsmon Copy
Mdir EDIT

LOGIN

Name
LOGIN — Timesharing System Log-In

Synopsis

LOGIN

74

Chapter 7. System Command Descriptions

Description

Login is used in timesharing systems to provide log-in security. It is automatically
called by the timesharing monitor "tsmon", or can be used after initial log-in to
change a terminal’s user.

Login requests a user name and password, which is checked against a validation
file. If the information is correct, the user’s system priority, user ID, and working
directories are set up according to information stored in the file, and the initial
program specified in the password file is executed (usually SHELL). If the user
cannot supply a correct user name and password after three attempts, the process
is aborted. The validation file is called "PASSWORD" and must be present in the
directory "/d0/SYS". The file contains one or more variable-length text records,
one for each user name. Each record has the following fields, which are delimited
by commas:

1. User name (up to 32 characters, may include spaces). If this field is empty, any
name will match.

2. Password (up to 32 characters, may include spaces) If this field is omitted, no
password is required by the specific use.

3. User index (ID) number (from 0 to 65535, 0 is superuser). This number is used
by the file security system and as the system-wide user ID to identify all processes
initiated by the user. The system manager should assign a unique ID to each
potential user. (See 3.8)

4. Initial process (CPU time) priority: 1 - 255 (see 5.2)

5. Pathlist of initial execution directory (usually /d0/CMDS)

6. Pathlist of initial data directory (specific user’s directory)

7. Name of initial program to execute (usually "shell"). NOTE: This is not a shell
command line.

Here’s a sample validation file:

superuser,secret,0,255,.,.,shell
steve,open sesame,3,128,.,/d1/STEVE,shell
sally,qwerty,10,100,/d0/BUSINESS,/d1/LETTERS,wordprocessor
bob„4,128,.,/d1/BOB,Basic09

To use the login command, enter:

login

This will cause prompts for the user’s name and (optionally) password to be dis-
played, and if answered correctly, the user is logged into the system. Login initial-
izes the user number, working execution directory, working data directory, and
executes the initial program specified by the password file. The date, time and
process number (which is not the same as the user ID, see 5.3) are also displayed.

Note: if the shell from which "login" was called will not be needed again, it may be
discarded by using the EX command to start the LOGIN command. For example:

ex login

Logging Off the System

To log off the system, the initial program specified in the password file must be
terminated. For most programs (including shell) this may be done by typing an
end of file character (escape) as the first character on a line.

Displaying a "Message-of-the-Day"

If desired, a file named "motd" appearing in the SYS directory will cause LOGIN
to display it’s contents on the user’s terminal after successful login. This file is
not required for LOGIN to operate.

75

Chapter 7. System Command Descriptions

For more information see: tsmon, 2.5, 3.8, 5.3

Examples

OS9: login

OS-9 Level 1 Timesharing System Version 1.2 82/12/04 13:02:22

User name?: superuser
Password: secret

Process #07 logged 81/12/04 13:03:00

Welcome!

MAKDIR

Name
MAKDIR— Create directory file

Synopsis

MAKDIR path

Description

Creates a new directory file acdording to the pathlist given. The pathlist must
refer to a parent directory for which the user has write permission.

The new directory is initialized and initially does not contain files except for the
"." and ".." pointers to its parent directory and itself, respectively (see 3.7.3). All
access permissions are enabled (except sharable).

It is customary (but not mandatory) to capitalize directory names.

For more information see: 3.3, 3.4, 3.5,3.7.3, 3.9.5

Examples

makdir /d1/STEVE/PROJECT

makdir DATAFILES

makdir ../SAVEFILES

MDIR

Name
MDIR— Display Module Directory

76

Chapter 7. System Command Descriptions

Synopsis

MDIR [-e]

Description

Displays the present module names in the system module directory, i.e., all mod-
ules currently resident in memory. For example:

OS9: mdir

Module Directory at 14:44:35
D0 Pipe OS9 OS9P2
Init Boot DDisk D1
KBVDIO TERM IOMan RBF
SCF SysGo Clock Shell
PRINTER P PipeMan Piper
Mdir

If the "e" option is given, a full listing of the physical address, size, type, revision
level, reentant attribute, user count, and name of each module is displayed. All
numbers shown are in hexadecimal.

OS9: mdir -e

Module Directory at 10:55:04

ADDR SIZE TY RV AT UC NAME
---- ---- -- -- -- -- --------
C305 2F F1 1 R D0
F059 7EB C1 1 R OS9
F852 4F4 C1 1 R OS9P2
FD46 2E CO 1 R INIT
C363 798 E1 1 R 2 KBVDIO
CAFB 38 F1 1 R 2 TERM

WARNING: Many of the modules listed by MDIR are OS-9 system modules and
NOT executable as programs: always check the module type code before running
a module if you are not familiar with it!

For more information see: 5.4.1

MERGE

Name
MERGE— Copy and Combine Files to Standard Output

Synopsis

MERGE path { path }

Description

This command copies multiple input files specified by the pathlists given as pa-
rameters to the standard output path. it is commonly used to combine several
files into a single output file. Data is copied in the order the pathlists are given.

77

Chapter 7. System Command Descriptions

MERGE does no output line editing (such as automatic line feed). The standard
output is generally redirected to a file or device.

Examples

OS9: merge file1 file2 file3 file4 >combined.file

OS9: merge compile.list asm.list >/printer

MFREE

Name
MFREE— Display Free System RAM

Synopsis

MFREE

Description

Displays a list of which areas of memory are not presently in use and available
for assignment. The address and size of each free memory block are displayed.
The size is given as the number of 256-byte pages. This information is useful to
detect and correct memory fragmentation (see 5.4.3).

For more information see: 5.4, 5.4.3

Examples

OS9: mfree

Address pages
--------- -----

700- 7FF 1
B00-AEFF 164

B100-B1FF 1

Total pages free = 166

OS9GEN

Name
OS9GEN— Build and Link a Bootstrap File

78

Chapter 7. System Command Descriptions

Synopsis

OS9GEN device name

Description

OS9Gen is used to create and link the "OS9Boot" file required on any disk from
which OS-9 is to be bootstrapped. OS9Gen is used to add modules to an existing
boot or to create an entirely new boot file. If an exact copy of the existing OS9Boot
file is desired, the COBBLER command should be used instead.

The name of the device on which the "OS9Boot" file is to be installed is passed
to OS9Gen as a command line parameter. OS9Gen then creates a working file
called "TempBoot" on the device specified. Next it reads file names (pathlists)
from its standard input, one pathlist per line. Every file named is opened and
copied to "TempBoot". This is repeated until end-of-file or a blank line is reached
on OS9Gen’s standard input. All boot files must contain the OS-9 component
modules listed in section 6.1.

After all input files have been copied to "TempBoot", the old "OS9Boot" file, if
present, is deleted. "TempBoot" is then renamed to "OS9Boot", and its starting
address and size is linked in the disk’s Identification Sector (LSN 0) for use by the
OS-9 bootstrap firmware.

WARNING: Any "OS9Boot" file must be stored in physically contiguous sectors.
Therefore, OS9Gen is normally used on a freshly formatted disk. If the "OS9Boot"
file is fragmented, OS9Gen will print a warning message indicated the disk can-
not be used to bootstrap OS-9.

The list of file names given to OS9Gen can be entered from a keyboard, or
OS9Gen’s standard input may be redirected to a text file containing a list of file
names (pathlists) . If names are entered manually, no prompts are given, and
the end-of-file key (usually ESCAPE) or a blank line is entered after the line
containing the last pathlist.

For more information see: 6.0, 6.1, 6.6

Examples

To manually install a boot file on device "d1" which is an exact copy of the
"OS9Boot" file on device "d0":

OS9: os9gen /d1 (run OS9Gen)
/d0/os9boot (enter file to be installed)
[ESCAPE] (enter end-of-file)

To manually install a boot file on device "d1" which is a copy of the "OS9Boot" file
on device "do" with the addition of modules stored in the files "/d0/tape.driver"
and "/d2/video.driver":

OS9: os9gen /d1 (run OS9Gen)
/d0/os9boot (enter main boot file name)
/d0/tape.driver (enter name of first file to be added)
/d2/video.driver (enter name of second file to be added)
[ESCAPE] (enter end-of-file)

As above, but automatically by redirecting OS9Gen standard input:

OS9: build /d0/bootlist (use "build" to create file "bootlist")
? /d0/os9boot (enter first file name)
? /d0/tape.driver (enter second file name)
? /d2/video.driver (enter third file name)
? [RETURN] (terminate "build")
OS9: os9gen /d1 </d0/bootlist (run OS9gen with redirected input)

79

Chapter 7. System Command Descriptions

PROCS

Name
PROCS— Display Processes

Synopsis

PROCS [-e]

Description

Displays a list of processes running on the system. Normally only processes hav-
ing the user’s ID are listed, but if the "-e" option is given, processes of all users are
listed. The display is a "snapshot" taken at the instant the command is executed:
processes can switch states rapidly, usually many times per second.

PROCS shows the user and process ID numbers, priority, state (process status),
memory size (in 256 byte pages), primary program module, and standard input
path.

For more information see: 5.1, 5.2, 5.3

Examples

Level One Example:

User# Id pty state Mem Primary module
---- --- --- -------- --- --------------

0 2 0 active 2 Shell
0 1 0 waiting 1 SysGo
1 3 1 waiting 2 Tsmon
1 4 1 waiting 4 Shell
1 5 1 active 64 Basic09

PWD/PXD

Name
PWD/PXD— Print Working Directory / Print Execution Directory

Synopsis

PWD

PXD

80

Chapter 7. System Command Descriptions

Description

PWD displays a pathlist that shows the path from the root directory to the user’s
current data directory. It can be used by programs to discover the actual physical
location of files, or by humans who get lost in the file system. PXD is identical
except that is shows the pathlist of the user’s current execution directory.

Examples

OS9: chd /D1/STEVE/TEXTFILES/MANUALS
OS9: pwd
/D1/STEVE/TEXTFILES/MANUALS
OS9: chd ..
OS9: pwd
/D1/STEVE/TEXTFILES
OS9: chd ..
OS9: pwd
/D1/STEVE

OS9: pxd
/D0/CMDS

RENAME

Name
RENAME— Change file name

Synopsis

RENAME path new name

Description

Gives the mass storage file specified in the pathlist a new name. The user must
have write permission for the file to change its name. It is not possible to change
the names of devices, ".", or ".."

Examples

rename blue purple

rename /D3/user9/test temp

OS9: dir

Directory of . 16:22:53
myfile animals

OS9:rename animals cars
OS9:dir

Directory of . 16:23:22
myfile cars

81

Chapter 7. System Command Descriptions

RUNB

Name
RUNB— BASIC09 run time package

Synopsis

Runb i-code module

Description

BASIC09 run time package

Once one or more BASIC09 procedures are debugged to the programmer’s satis-
faction, they can be "packed" or converted permanently to the bytecode form.

Packed BASIC09 procedures are in fact OS-9 modules, and the OS-9 shell recog-
nizes them as I-code and passes them off to the virtual machine emulator RunB
for execution. RunB avoids a great deal of the overhead of the typical interpreted
BASICs of the day -- not to mention that one can do integer calculations where
appropriate rather than doing everything in floating point -- so that BASIC09
programs run very quickly in comparison with interpreted BASICs.

SAVE

Name
SAVE— Save memory module(s) on a file

Synopsis

SAVE path modname {modname}

Description

Creates a new file and writes a copy of the memory module(s) specified on to
the file. The module name(s) must exist in the module directory when saved. The
new file is given access permissions for all modes except public write.

Note: SAVE’s default directory is the current data directory. Executable modules
should generally be saved in the default execution directory.

Examples

save wordcount wcount

save /d1/mathpack add sub mul div

82

Chapter 7. System Command Descriptions

SETIME

Name
SETIME— Activate and set system clock

Synopsis

SETIME [y,m,d,h,m,s]

Description

This command sets the system date and time, then activates the real time clock.
The date and time can be entered as parameters, or if no parameters are given,
SETIME will issue a prompt. Numbers are one or two decimal digits using space,
colon, semicolon or slash delimiters. OS-9 system time uses the 24 hour clock, i.e.,
1520 is 3:20 PM.

IMPORTANT NOTE: This command must be executed before OS-9 can perform
multitasking operations. If the system does not have a real time clock this com-
mand should still be used to set the date for the file system.

SYSTEMS WITH BATTERY BACKED UP CLOCKS: Setime should still be run to
start time-slicing, but only the year need be given, the date and time will be read
from the clock.

Examples

OS9: setime 82,12,22,1545 (Set to: Dec. 12, 1981, 3:45 PM)

OS9: setime 821222 154500 (Same as above)

OS9: setime 82 (For system with battery-backup clock)

SETPR

Name
SETPR— Set Process Priority

Synopsis

SETPR procID number

Description

This command changes the CPU priority of a process. It may only be used with
a process having the user’s ID. The process number is a decimal number in the
range of 1 (lowest) to 255. The "procs" command can be used to obtain process ID
numbers and present priority.

NOTE: This command does not appear in the CMDS directory as it is built-in to
the SHELL.

83

Chapter 7. System Command Descriptions

For more information see: 5.1, PROCS

Examples

setpr 8 250 (change process #8 priority to 250)

OS9: procs

User # Id pty state Mem Primary module
----- --- --- -------- --- --------------

0 3 0 waiting 2 Shell <TERM
0 2 0 waiting 2 Shell <TERM
0 1 0 waiting 1 Sysgo <TERM

OS9: setpr 3 128
OS9: procs

User # Id pty state Mem Primary module
----- --- --- -------- --- --------------

0 3 128 active 2 Shell <TERM
0 2 0 waiting 2 Shell <TERM
0 1 0 waiting 1 Sysgo <TERM

SHELL

Name
SHELL— OS-9 Command Interpreter

Synopsis

SHELL arglist

Description

The Shell is OS-9’s command interpreter program. It reads data from its standard
input path (the keyboard or a file), and interprets the data as a sequence of com-
mands. - The basic function of the shell is to initiate and control execution of other
OS-9 programs.

The shell reads and interprets one text line at a time from the standard input path.
After interpretation of each line it reads another until an end-of-file condition
occurs, at which time it terminates itself. A special case is when the shell is called
from another program, in which case it will take the parameter area (rest of the
command line) as its first line of input. If this command line consists of "built in"
commands only, more lines will be read and processed; otherwise control will
return to the calling program after the single command line is processed.

The rest of this description is a technical specification of the shell syntax. Use of
the Shell is described fully in Chapters 2 and 4 of this manual.

84

Chapter 7. System Command Descriptions

Shell Input Line Formal Syntax

pgm line := pgm { pgm}
pgm := [params] [name [modif] [pgm params] [modif]] [sep]

Program Specifications

name := module name
:= pathlist
:= (pgm list)

Parameters

params := param { delim param }
delim := space or comma characters
param := ex name [modif] chain to program specified

:= chd pathlist change working directory
:= kill procID send abort signal to process
:= setpr procID pty change process priority
:= chx pathlist change execution directory
:= w wait for any process to die
:= p turn "OS9:" prompt-

ing on
:= -p turn prompting off
:= t echo input lines to std output
:= -t don’t echo input lines
:= -x dont abort on error
:= x abort on error
:= * text comment line: not processed

sep := ; sequential execution separator
:= & concurrent execution separator
:= ! pipeline separator
:= cr end-of-line (sequential execution separator)

Modifiers

modif := mod { delim mod }
mod := < pathlist redirect standard input

:= > pathlist redirect standard output
:= >> pathlist redirect standard error output
:= # integer set process memory size in pages
:= # integer K set program memory size in 1K increments

SLEEP

Name
SLEEP— Suspend process for period of time

Synopsis

SLEEP tickcount

85

Chapter 7. System Command Descriptions

Description

This command puts the user’s process to "sleep" for a number of clock ticks. It is
generally used to generate time delays or to "break up" CPU-intensive jobs. The
duration of a tick is 16.66 milliseconds.

A tick count of 1 causes the process to "give up" its current time slide. A tick count
of zero causes the process to sleep indefinitely (usually awakened by a signal)

Examples

OS9: sleep 25

TEE

Name
TEE— Copy standard input to multiple output paths

Synopsis

TEE {path }

Description

TEE Copy standard input to multiple output paths Syntax: Tee {path } This com-
mand is a filter (see 4.3.3) that copies all text lines from its standard input path
to the standard output path and any number of additional output paths whose
pathlists are given as parameters.

The example below uses a pipeline and TEE to simultaneously send the output
listing of the "dir" command to the terminal, printer, and a disk file:

dir e ! tee /printer /d0/dir.listing

The following example sends the output of an assembler listing to a disk file and
the printer:

asm pgm.src l ! tee pgm.list >/printer

The example below "broadcasts" a message to four terminals:

echo WARNING System down in 10 minutes ! tee /t1 /t2 /t3 /t4

TMODE

Name
TMODE— Change terminal operating mode

86

Chapter 7. System Command Descriptions

Synopsis

TMODE [.pathnum] [arglist]

Description

This command is used to display or change the operating parameters of the user’s
terminal.

If no arguments are given, the present values for each parameter are displayed,
otherwise, the parameter(s) given in the argument list are processed. Any number
of parameters can be. given, and are separated by spaces or commas. A period
and a number can be used to optionally specify the path number to be affected.
If none is given, the standard input path is affected.

NOTE: If this command is used in a shell procedure file, the option ".path num "
must be used to specify one of the standard output paths (0, 1 or 2) to change
the terminal’s operating characteristics. The change will remain in effect until the
path is closed. To effect a permanent change to a device characteristic, the device
descriptor must be changed.

This command can work only if a path to the file/device has already been
opened. You may alter the device descriptor to set a device’s initial operating
parameter (see the System Programmer’s Manual).

upc Upper case only. Lower case characters are automatically
converted to upper case.

-upc Upper case and lower case characters permitted (default).

bsb Erase on backspace: backspace characters echoed as a
backspace-space-backspace sequence (default).

-bsb no erase on backspace: echoes single backspace only

bsl Backspace over line: lines are "deleted" by sending
backspace-space-backspace sequences to erase the same line (for
video terminals) (default).

-bsl No backspace over line: lines are "deleted" by printing a new
line sequence (for hard-copy terminals). echo Input characters
"echoed" back to terminal (default)

-echo No echo

lf Auto line feed on: line feeds automatically echoed to terminal on
input and output carriage returns (default).

-lf Auto line feed off.

pause Screen pause on: output suspended upon full screen. See "pag"
parameter for definition of screen size. Output can be resumed
by typing any key.

-pause Screen pause mode off.

null=n Set null count: number of null ($00) characters transmitted after
carriage returns for return delay. The number is decimal, default
= 0.

pag=n Set video display page length to n (decimal) lines. Used for
"pause" mode, see above.

bsp=h Set input backspace character. Numeric value of character in
hexadecimal. Default = 08.

bse=h Set output backspace character. Numeric value of character in
hexadecimal. Default = 08.

del=h Set input delete line character. Numeric value of character in
hexadecimal. Default = 18.

87

Chapter 7. System Command Descriptions

bell=h Set bell (alert) output character. Numeric value of character in
hexadecimal. Default = 07

eor=h Set end-of-record (carriage return) input character. Numeric
value of character in hexadecimal. Default = 0D

eof=h Set end-of-file input character. Numeric value of character in
hexadecimal. Default 1B.

type=h ACIA initialization value: sets parity, word size, etc. Value in
hexadecimal. Default 15

reprint=h Reprint line character. Numeric value of character in
hexadecimal.

dup=h Duplicate last input line character. Numeric value of character in
hexadecimal.

psc=h Pause character. Numeric value of character in hexadecimal.

abort=h Abort character (normally control C). Numeric value of
character in hexadecimal.

quit=h Quit character (normally control E). Numeric value of character
in hexadecimal.

baud=d Set baud rate for software-controllable interface. Numeric code
for baud rate: 0=110 1=300 2=600 3=1200 4=2400 5=4800 6=9600
7=19200

Examples

tmode -upc lf null=4 bselF pause

tmode pag=24 pause bsl -echo bsp=8 bsl=C

NOTE: If you use TMODE in a procedure file, it will be necessary to specify one
of the standard output paths (.1 or .2) since the shell’s standard input path will
have been redirected to the disk file (TMODE can be used on an SCFMAN-type
devices only). Example:

tmode .1 pag=24 (set lines/page on standard output)

TSMON

Name
TSMON— Timesharing monitor

Synopsis

TSMON [pathlist]

Description

This command is used to supervise idle terminals and initiate the login sequence
in timesharing applications. If a pathlist is given, standard I/O paths are opened
for the device. When a carriage return is typed, TSMON will automatically call

88

Chapter 7. System Command Descriptions

the "LOGIN" command. If the login fails because the user could not supply a
valid user name or password, it will return to TSMON.

Note: The LOGIN command and its password file must be present for TSMON
to work correctly (see the LOGIN command description).

Logging Off the System

Most programs will terminate when an end of file character (escape) is entered
as the first character on a command line. This will log you off of the system and
return control to TSMON.

For more information see: 2.5, LOGIN

Examples

OS9:tsmon /t1&
&005

TUNEPORT

Name
TUNEPORT— Tune the printer port on the TRS-80/Tandy Color Computer

Synopsis

TUNEPORT [-s=value]

Description

This command lets you test and set delay loop values for the current baud rate
and select the best value for your printer (/P) or terminal (/T1).

Examples

TUNEPORT /P [ENTER]

Provides a text operation for your printer. After a short delay, TUNEPORT dis-
plays the current baud rate and sends data to the printer to test if it is working
properly. The program then displays the current delay value and asks for a new
value. Enter a decimal delay value and press [ENTER]. Again, test data is sent to
the printer as a test. Continue this process until you find the best value. When you
are satisfied, press [ENTER] instead of entering a value at the prompt. A closing
message displays your new value.

Use the same process to set a new delay loop value for /T1 terminal

TUNEPORT /P -s=225 [ENTER]

Sets the delay loop value for your printer at 225. Use such a command on future
system boots to set the optimum delay value determined with the TUNEPORT
test function. Then, using OS9GEN or COBBLER, generate a new boot file for
your system diskette. You can also use TUNEPORT in your system startup file to
set the value using the -S option.

89

Chapter 7. System Command Descriptions

UNLINK

Name
UNLINK — Unlink memory module

Synopsis

UNLINK modname { modname}

Description

Tells OS-9 that the memory module(s) named are no longer needed by the user.
The module(s) may or may not be destroyed and their memory reassigned, de-
pending on if in use by other processes or user, whether resident in ROM or RAM,
etc.

It is good practice to unload modules whenever possible to make most efficient
use of available memory resources.

Warning: never unlink a module you did not load or link to.

For more information see: 5.4, 5.4.1, 5.4.2

Examples

unlink pgml pgm5 pgm99

OS9: mdir

Module Directory at 11:26:22
DCB4 D0 D1 D2 D3
OS9P2 INIT OS9 IOMAN RBF
SCF ACIA TERM T1 T2
T3 P PIA Sysgo Clock
Shell Tsmon Edit

OS9: unlink edit
OS9: mdir

Module Directory at 11:26:22
DCB4 D0 D1 D2 D3
OS9P2 INIT OS9 IOMAN RBF
SCF ACIA TERM T1 T2
T3 P PIA Sysgo Clock
Shell Tsmon

VERIFY

Name
VERIFY — Verify or update module header and CRC

90

Chapter 7. System Command Descriptions

Synopsis

VERIFY [-u]

Description

This command is used to verify that module header parity and CRC value of one
or more modules on a file (standard input) are correct. Module(s) are read from
standard input, and messages will be sent to the standard error path.

If the -u (update) option is specified, the module(s) will be copied to the standard
output path with the module’s header parity and CRC values replaced with the
computed values. A message will be displayed to indicate whether or not the
module’s values matched those computed by VERIFY.

If the option is NOT specified, the module will not be copied to standard output.
VERIFY will only display a message to indicate whether or not the module’s
header parity and CRC matched those which were computed.

Examples

OS9: verify <EDIT >NEWEDIT

Module’s header parity is correct.
Calculated CRC matches module’s.

OS9: verify <myprograml >myprogram2

Module’s header parity is correct.
CRC does not match.

OS9: verify <myprogram2

Module’s header parity is correct.
Calculated CRC matches module’s.

OS9: verify -u <module >temp

XMODE

Name
XMODE— Examine or Change Device Initialization Mode

Synopsis

XMODE devname [arglist]

Description

This command is used to display or change the initialization parameters of any
SCF-type device such as the video display, printer, RS232 port, etc. A common
use is to change baud rates, control key definitions, etc.

XMODE is very similar to the TMODE command. TMODE only operates on open
paths so its effect is temporary. XMODE actually updates the device descriptor so
the change persists as long as the computer is running, even if paths to the device

91

Chapter 7. System Command Descriptions

are repetitively opened and closed. If XMODE is used to change parameter(s)
and the COBBLER program is used to make a new system disk, the changed
parameter will be permanently reflected on the new system disk.

XMODE requires a device name to be given. If no arguments are given, the
present values for each parameter are displayed, otherwise, the parameter(s)
given in the argument list are processed. Any number of parameters can be
given, and are separated by spaces or commas.

XMODE Parameter Names

upc Upper case only. Lower case characters are automatically
converted to upper case.

-upc Upper case and lower case characters permitted (default).

bsb Erase on backspace: backspace characters echoed as a
backspace-space-backspace sequence (default).

-bsb no erase on backspace: echoes single backspace only

bsl Backspace over line: lines are "deleted" by sending
backspace-space-backspace sequences to erase the same line (for
video terminals) (default).

-bsl No backspace over line: lines are "deleted" by printing a new
line sequence (for hard-copy terminals). echo Input characters
"echoed" back to terminal (default)

-echo No echo

lf Auto line feed on: line feeds automatically echoed to terminal on
input and output carriage returns (default).

-lf Auto line feed off.

pause Screen pause on: output suspended upon full screen. See "pag"
parameter for definition of screen size. Output can be resumed
by typing any key.

-pause Screen pause mode off.

null=n Set null count: number of null ($00) characters transmitted after
carriage returns for return delay. The number is decimal, default
= 0.

pag=n Set video display page length to n (decimal) lines. Used for
"pause" mode, see above.

bsp=h Set input backspace character. Numeric value of character in
hexadecimal. Default = 08.

bse=h Set output backspace character. Numeric value of character in
hexadecimal. Default = 08.

del=h Set input delete line character. Numeric value of character in
hexadecimal. Default = 18.

bell=h Set bell (alert) output character. Numeric value of character in
hexadecimal. Default = 07

eor=h Set end-of-record (carriage return) input character. Numeric
value of character in hexadecimal. Default = 0D

eof=h Set end-of-file input character. Numeric value of character in
hexadecimal. Default 1B.

type=h ACIA initialization value: sets parity, word size, etc. Value in
hexadecimal. Default 15

reprint=h Reprint line character. Numeric value of character in
hexadecimal.

dup=h Duplicate last input line character. Numeric value of character in
hexadecimal.

92

Chapter 7. System Command Descriptions

psc=h Pause character. Numeric value of character in hexadecimal.

abort=h Abort character (normally control C). Numeric value of
character in hexadecimal.

quit=h Quit character (normally control E). Numeric value of character
in hexadecimal.

baud=d Set baud rate for software-controllable interface. Numeric code
for baud rate: 0=110 1=300 2=600 3=1200 4=2400 5=4800 6=9600
7=19200

Examples

xmode /TERM -upc lf null=4 bse=1F pause

xmode /T1 pag=24 pause bsl -echo bsp=8 bsl=C

xmode /P baud=3 -if

93

Chapter 7. System Command Descriptions

94

Appendix A. OS-9 Error Codes

The error codes are shown in both hexadecimal (first column) and decimal (sec-
ond column). Error codes other than those listed are generated by programming
languages or user programs.

HEX DEC

$C8 200 PATH TABLE FULL - The file cannot be opened because the
system path table is currently full.

$C9 201 ILLEGAL PATH NUMBER - Number too large or for
non-existant path.

$CA 202 INTERRUPT POLLING TABLE FULL

$CB 203 ILLEGAL MODE - attempt to perform I/O function of which
the device or file is incapable.

$CC 204 DEVICE TABLE FULL - Can’t add another device

$CD 205 ILLEGAL MODULE HEADER - module not loaded because
its sync code, header parity, or CRC is incorrect.

$CE 206 MODULE DIRECTORY FULL - Can’t add another module

$CF 207 MEMORY FULL - Level One: not enough contiquous RAM
free. Level Two: process address space full

$D0 208 ILLEGAL SERVICE REQUEST - System call had an illegal
code number.

$D1 209 MODULE BUSY - non-sharable module is in use by another
process.

$D2 210 BOUNDARY ERROR - Memory allocation or deallocation
request not on a page boundary.

$D3 211 END OF FILE - End of file encountered on read.

$D4 212 RETURNING NON-ALLOCATED MEMORY - attempted to
deallocate memory not previously assigned.

$D5 213 NON-EXISTING SEGMENT - device has damaged file
structure.

$D6 214 NO PERMISSION - file attributes do not permit access
requested.

$D7 215 BAD PATH NAME - syntax error in pathlist (illegal
character, etc.).

$D8 216 PATH NAME NOT FOUND - can’t find pathlist specified.

$D9 217 SEGMENT LIST FULL - file is too fragmented to be
expanded further.

$DA 218 FILE ALREADY EXISTS - file name already appears in
current directory.

$DB 219 ILLEGAL BLOCK ADDRESS - device’s file structure has
been damaged.

$DC 220 ILLEGAL BLOCK SIZE - device’s file structure has been
damaged.

$DD 221 MODULE NOT FOUND - request for link to module not
found in directory.

$DE 222 SECTOR OUT OF RANGE - device file structure damaged or
incorrectly formatted.

$DF 223 SUICIDE ATTEMPT - request to return memory where your
stack is located.

$E0 224 ILLEGAL PROCESS NUMBER - no such process exists.

$E2 226 NO CHILDREN - can’t wait because process has no children.

95

Appendix A. OS-9 Error Codes

HEX DEC

$E3 227 ILLEGAL SWI CODE - must be 1 to 3.

$E4 228 PROCESS ABORTED - process aborted by signal code 2.

$E5 229 PROCESS TABLE FULL - can’t fork now.

$E6 230 ILLEGAL PARAMETER AREA - high and low bounds
passed in fork call are incorrect.

$E7 231 KNOWN MODULE - for internal use only.

$E8 232 INCORRECT MODULE CRC - module has bad CRC value.

$E9 233 SIGNAL ERROR - receiving process has previous
unprocessed signal pending.

$EA 234 NON-EXISTENT MODULE - unable to locate module.

$EB 235 BAD NAME - illegal name syntax

$EC 236 BAD HEADER - module header parity incorrect

$ED 237 RAM FULL - no free system RAM available at this time

$EE 238 UNKNOWN PROCESS ID - incorrect process ID number

$EF 239 NO TASK NUMBER AVAILABLE - all task numbers in use

A.1. Device Driver Errors
The following error codes are generated by I/O device drivers, and are somewhat
hardware dependent. Consult manufacturer’s hardware manual for more details.

$F0 240 UNIT ERROR - device unit does not exist.

$F1 241 SECTOR ERROR - sector number is out of range.

$F2 242 WRITE PROTECT - device is write protected.

$F3 243 CRC ERROR - CRC error on read or write verify.

$F4 244 READ ERROR - Data transfer error during disk read
operation, or SCF (terminal) input buffer overrun.

$F5 245 WRITE ERROR - hardware error during disk write
operation.

$F6 246 NOT READY - device has "not ready" status.

$F7 247 SEEK ERROR - physical seek to non-existant sector.

$F8 248 MEDIA FULL - insufficient free space on media.

$F9 249 WRONG TYPE - attempt to read incompatible media (i.e.
attempt to read double-side disk on single-side drive)

$FA 250 DEVICE BUSY - non-sharable device is in use

$FB 251 DISK ID CHANGE - Media was changed with files open

$FC 252 RECORD IS LOCKED-OUT - Another process is accessing
the requested record.

$FD 253 NON-SHARABLE FILE BUSY - Another process is accessing
the requested file.

96

Appendix B. VDG Display System Functions

B.1. The Video Display Generator
OS-9 Level One allows the VDG display to be used in alphanumeric, semigraphic,
and graphics modes. There are many built-in functions to control the display,
which are activated by used of various ASCII control character. Thus, these func-
tions are available for use by software written in any language using standard
output statements (such as "PRINT" in BASIC). The TRS-80/Tandy Color Com-
puter’s Basic09 language has a Graphics Interface Module that can automatically
generate these codes using Basic09 RUN statements.

The display system has two display modes: Alphanumeric ("Alpha") mode
and Graphics mode. The Alphanumeric mode also includes "semigraphic"
box-graphics. The TRS-80/Tandy Color Computer’s display system uses
a separate - memory area for each display mode so operations on the Alpha
display do not affect the Graphics display, and visa-versa. Either display can be
selected under software control.

8-bit characters sent to the display system are interpreted according to their nu-
merical value, as shown in the chart below.

Character Range (Hex) Mode/Used For

00 - 0E Alpha Mode - cursor and screen control

0F - 1B Graphics Mode - drawing and screen control

1C - 20 Not used

20 - SF Alpha Mode - upper case characters

60 - 7F Alpha Mode - lower case characters

80 - FF Alpha Mode - Semigraphic patterns

The graphics and alphanumeric functions are handled by the OS-9 device driver
module called "CCIO".

B.2. Alpha Mode Display
This is the "standard" operational mode. It is used to display alphanumeric char-
acters and semigraphic box graphics, and simulates the operation of a typical
computer terminal with functions for scrolling, cursor positioning, clear screen,
line delete, etc.

Each 8-bit character is assumed to be an ASCII character and is displayed if its
high order bit (sign bit) is cleared. Lower case letters are displayed in reverse
video. If the high order bit of the character is set it is assumed to be a "Semi-
graphic 6" graphics box. See the TRS-80/Tandy Color Computer manual for an
explanation of semigraphics functions.

Table B-1. Alpha Mode Command Codes

Control
Code

Name/Function

01 HOME - return cursor to upper left hand corner of screen

02 CURSOR XY - move cursor to character X of line Y. The binary
value minus 32 of the two characters following the control
character are used as the X and Y coordinates. For example, to
position the cursor at character 5 of line 10, you must give X=37
and Y42

03 ERASE LINE - erases all characters on the cursor’s line.

06 CURSOR RIGHT - move cursor right one character position

97

Appendix B. VDG Display System Functions

Control
Code

Name/Function

08 CURSOR LEFT - move cursor left one character position

09 CURSOR UP - move cursor up one line

10 CURSOR DOWN (linefeed) move cursor down one line

12 CLEAR SCREEN - erase entire screen and home cursor

13 RETURN - return cursor to leftmost character of line

14 DISPLAY ALPHA - switch screen from graphic mode to alpha
numeric mode

B.3. Graphics Mode Display
This mode is used to display high-resolution 2- or 4-color graphics, and it in-
cludes commands to: set color; plot and erase individual points; draw and erase
lines; position the graphics cursor; and draw circles.

The DISPLAY GRAPHICS command must be executed before any other graphics
mode command is used. It causes the graphics screen to be displayed and sets a
current display format and color. The Li.u.t time the DISPLAY GRAPHICS com-
mand is given, a 6144 byte display memory is allocated by OS-9, so there must
be at least this much continuous free memory available (the OS-9 "MFREE" com-
mand can be used to check free memory). This memory is retained until the END
GRAPHICS command is given, even if the program that initiated Graphics mode
finishes, so it important that the END GRAPHICS command be used to give up
the display memory when Graphics mode is no longer needed.

Graphics mode supports two basic formats: Two-Color which has 256 horizontal
by 192 vertical points (G6R mode); and Four Color which has 128 horizontal by
192 vertical points (G6C mode). Two color sets are available in either mode. Re-
gardless of the resolution of the format selected, all Graphics mode commands
use a 256 by 192 point coordinate system. The X and Y coordinates are always
positive numbers which assume that point 0,0 is the lower lefthand corner of the
screen.

An invisible Graphics Cursor is used by many command to reduce the amount
of output required to generate graphics. This cursor can be explicitly set to any
point using the SET GRAPHICS CURSOR command. Also, all other commands
that include X,Y coordinates (such as SET POINT) move the graphics cursor to
the specified position.

Table B-2. Graphics Mode Selection Codes

Code Format

00 256 x 192 two-color graphics

01 128 x 192 four-color graphics

Table B-3. Color Set and Current Foreground Color Selection Codes

Two Color Format Four Color Format

Char Background Foreground Background Foreground

Color
Set 1

00 Black Black Green Green

01 Black Green Green Yellow

02 Green Blue

03 Green Red

Color
Set 2

04 Black Black Buff Buff

98

Appendix B. VDG Display System Functions

Two Color Format Four Color Format

Char Background Foreground Background Foreground

05 Black Buff Buff Cyan

06 Buff Magenta

07 Buff Orange

Color
Set 3*

08 Black Black

09 Black Dark Green

10 Black Med. Green

11 Black Light Green

Color
Set 4*

12 Black Black

13 Black Green

14 Black Red

15 Black Buff

* Color sets 3 and 4 not available on PAL video system (European) models. These
color sets work only with NTSC (U.S., Canada, Japan) models.

Table B-4. Graphics Mode Control Commands

Control
Code

Name/Function

15 DISPLAY GRAPHICS - switches screen to graphics mode. This
command must be given before any other graphics commands
are used. The first time this command is given, a 6K byte display
buffer is assigned. If 6K of contiguous memory is not available
an error is returned. This command is followed by two
characters which specify the graphics mode and current
color/color set, respectively.

16 PRESET SCREEN - presets entire screen to color code passed in
next character.

17 SET COLOR - selects foreground color (and color set) passed in
next character, but does not change graphics mode.

18 QUIT GRAPHICS - disables graphics mode and returns the 6K
byte graphics memory area to OS-9 for other use, and switches
to alpha mode.

19 ERASE GRAPHICS - erases all points to background color and
homes graphics cursor to the desired position.

20 HOME GRAPHICS CURSOR - moves graphics cursor to
coordinates 0,0 (lower left hand corner).

21 SET GRAPHICS CURSOR - moves graphics cursor to given
coordinates X,Y. The binary value of the two characters that
immediately follow are used as the X and Y values, respectively.

22 DRAW LINE - draws a line of the current foreground color from
the current graphics cursor position to the given X,Y
coordinates. The binary value of the two characters that
immediately follow are used as the X and Y values, respectively.
The graphics cursor is moved to the end point of the line.

23 ERASE LINE - same as DRAW LINE except the line is "drawn"
in the current background color, thus erasing the line.

24 SET POINT - sets the pixel-at point X,Y to the current
foreground color. The binary value of the two characters that
immediately follow are used as the x and Y values, respectively.
The graphics cursor is moved to the point Set.

99

Appendix B. VDG Display System Functions

Control
Code

Name/Function

25 ERASE POINT - same as DRAW POINT except the point is
"drawn" in the current background color, thus erasing the point.

26 DRAW CIRCLE - draws a circle of the current foreground color
with its center at the current graphics cursor position using a
radius R which is obtained using the binary value of the next
character. The graphics cursor position is not affected by this
command.

B.4. Get Status Commands
The TRS-80/Tandy Color Computer I/O driver includes OS-9 Get Status com-
mands that return the display status and joystick values, respectively. These are
accessable via the Basic09 Graphics Interface Module, or by the assembly lan-
guage system calls listed below:

GET DISPLAY STATUS:

Calling Format lda #1 (path number)
ldb #SS.DStat (Getstat code $12)
os9 I$GSTT call OS-9

Passed nothing

Returns X = address of graphics display memory
Y = graphics cursor address x=MSB y =LSB
A = color code of pixel at cursor address

GET JOYSTICK VALUES:

Calling Format lda #1 (path number)
ldb #SS.Joy (Getstat code $13)
os9 I$GSTT call OS-9

Passed X = 0 for right joystick; 1 for left joystick

Returns X = selected joystick x value (0-63)
Y = selected joystick y value (0-63)
A = $FF if fire button on; $00 if off

Table B-5. Display Control Codes Condensed Summary

1st Byte 2nd Byte 3rd Byte Function

00 Null

01 Home Alpha Cursor

02 Column+32 Row+32 Position Alpha Cursor

03 Erase Line

06 Cursor Right

08 Cursor Left

09 Cursor Up

10 Cursor Down

12 Clear Screen

13 Carriage Return

14 Select Alpha Mode

15 Mode Color Code Select Graphics Mode

16 Color Code Preset Screen
100

Appendix B. VDG Display System Functions

1st Byte 2nd Byte 3rd Byte Function

17 Color Code Select Color

18 Quit
Graphics
Mode

19 Erase Screen

20 Home
Graphics
Cursor

21 X Coord Y Coord Move Graphics Cursor

22 X Coord Y Coord Draw Line to X/Y

23 X Coord Y Coord Erase Line to X/Y

24 X Coord Y Coord Set Point at X/Y

25 X Coord Y Coord Clear Point at X/Y

26 Radius Draw Circle

101

Appendix B. VDG Display System Functions

102

Appendix C. Key Definitions With Hexadecimal Values

NORM SHFT CTRL NORM SHFT CTRL NORM SHFT CTRL
---- ---- ------ ---- ---- ------ ---- ---- ------
0 30 0 30 -- @ 40 ’ 60 NUL 00 P 50 p 70 DLE 10
1 31 1 21 | 7C A 41 a 61 SOH 01 Q 51 q 71 DC1 11
2 32 " 22 00 B 42 b 62 STX 02 R 52 r 72 DC2 12
3 33 # 23 - 7E C 43 c 63 ETX O3 S 53 s 73 DC3 13
4 34 $ 24 00 0 44 d 64 EOT 04 T 54 t 74 DC4 14
5 35 % 25 00 E 45 e 65 END O5 U 55 u 75 NAK 15
6 36 & 26 00 F 46 f 66 ACK 06 V 56 V 76 SYN 16
7 37 ’ 27 5E G 47 g 67 BEL O7 W 57 w 77 ETB 17
8 38 (28 [5B H 48 h 68 BSP 08 X 58 x 78 CAN 18
9 39) 29] 5D I 49 i 69 HT O9 Y 59 y 79 EM 19
: 3A * 2A 00 J 4A j 6A LF CA Z 5A z 7A SUM 1A
; 3B + 2B 00 K 4B k 6B VT OB
, 2C < 3C { 7B L 4C l 6C FF 0C
- 2D = 3D - 5F M 4D m 6D CR 00
. 2E > 3E } 7D N 4E n 6E CO CE
/ 2F ? 3F \ 5C O 4F o 6F CI OF

FUNCTION KEYS

NORM SHFT CTRL
---- ---- ----

BREAK 05 03 1B
ENTER 0D 0D 0D
SPACE 20 20 20

<- 08 18 10
-> 09 19 11
v 0A 1A 12
^ 0C 1C 13

103

Appendix C. Key Definitions With Hexadecimal Values

104

Appendix D. Using the Serial Interface

For those who wish to use the serial port, the input or output path of a program
may be redirected to the serial port of your TRS-80/Tandy Color Computer.

This is done by including the following module in the OS-9 kernel:

ACIA51 - Serial Device Driver

To load this module into the kernel enter the following command line:

LOAD /D0/CMDS/ACIA51

D.1. Serial Printer Implementation
For those with a serial printer, you can use the serial port in the redirection of a
program’s output path by including the following modifier at the end of a com-
mand line:

>/P1

The baud rate of the serial port may be changed as follows:

XMODE /P1 BAUD=3

This will change the baud rate to 1200 characters per second. For a detailed de-
scription of the baud rate see the XMODE command description.

D.2. Serial Terminal Implementation
For those who wish to connect two TRS-80/Tandy Color Computers, running
OS-9, together using the serial port, redirection of the input or output paths is
possible using the following modifier at the end of a command line:

>/T1 - for an output path

</T1 - for an input path

To pass a file of data between the two computers, one must be configured for
input from the serial port and the other configured for output:

Computer 1, BUILD TEXT </T1 - input to port

Computer 2, BUILD <TEXT /T1 - output to port

Using the above example, the text file on computer 2 will be transferred to a file
called TEXT on computer 1.

When the command line is entered on computer 1, the system will reply with
a question mark and wait for information from the serial port. The command
line on computer 2 will send data to the now waiting computer 1. A string of
question marks will now be seen, this is the number of lines sent and recieved by
the respective computers.

To create a log-off sequence after such a transfer, use the DISPLAY command as
follows:

Computer 1, BUILD <TEXT /T1 ; DISPLAY 0A 0D >/T1

105

Appendix D. Using the Serial Interface

106

	OS9 Level One Operating System User's Guide
	Table of Contents
	Welcome to OS9!
	Chapter 1. Getting Started...
	1.1. What You Need to Run OS9
	1.1.1. Starting the System
	1.1.2. In Case You Have Problems Starting OS9
	1.1.3. A Quick Introduction to the Use of the Keyboard and Disks
	1.1.4. Initial Explorations

	1.2. Making a Backup of the System Disk
	1.2.1. Formatting Blank Disks
	1.2.2. Running the Backup Program

	Chapter 2. Basic Interactive Functions
	2.1. Running Commands and Basic Shell Operation
	2.1.1. Sending Output to the Printer

	2.2. Shell Command Line Parameters
	2.3. Some Common Command Formats
	2.4. Using the Keyboard and Video Display
	2.4.1. Video Display Functions
	2.4.2. Keyboard Shift and Control Functions
	2.4.3. Control Key Functions

	Chapter 3. The OS9 File System
	3.1. Introduction to the Unified Input/Output System
	3.2. Pathlists: How Paths Are Named
	3.3. I/O Device Names
	3.4. Multifile Devices And Directory Files
	3.5. Creating and Using Directories
	3.6. Deleting Directory Files
	3.7. Additional Information About Directories
	3.8. Using and Changing Working Directories
	3.8.1. Automatic Selection of Working Directories
	3.8.2. Changing Current Working Directories
	3.8.3. Anonymous Directory Names

	3.9. The File Security System
	3.9.1. Examining and Changing File Attributes

	3.10. Reading and Writing From Files
	3.10.1. File Usage in OS9
	3.10.2. Text Files
	3.10.3. Random Access Data Files
	3.10.4. Executable Program Module Files
	3.10.5. Directory Files
	3.10.6. Miscellaneous File Usage

	3.11. Physical File Organization
	Chapter 4. Advanced Features of the Shell
	4.1. A More Detailed Description Command Line Processing
	4.2. Execution Modifiers
	4.2.1. Alternate Memory Size Modifier
	4.2.2. I/O Redirection Modifiers

	4.3. Command Separators
	4.3.1. Sequential Execution
	4.3.2. Concurrent Execution
	4.3.3. Pipes and Filters

	4.4. Command Grouping
	4.5. Builtin Shell Commands and Options
	4.6. Shell Procedure Files
	4.7. Error Reporting
	4.8. Running Compiled Intermediate Code Programs
	4.9. Setting Up Timesharing System Procedure Files
	Chapter 5. Multiprogramming and Memory Management
	5.1. Processor Time Allocation and Timeslicing
	5.2. Process States
	5.3. Creation of New Processes
	5.4. Basic Memory Management Functions
	5.4.1. Loading Program Modules Into Memory
	5.4.2. Loading Multiple Programs
	5.4.3. Memory Fragmentation

	Chapter 6. Use of the System Disk
	6.1. The OS9Boot File
	6.2. The SYS Directory
	6.3. The Startup File
	6.4. The CMDS Directory
	6.5. The DEFS Directory
	6.6. Changing System Disks
	6.7. Making New System Disks
	Chapter 7. System Command Descriptions
	7.1. Formal Syntax Notation
	7.2. Commands
	ATTR
	Name
	Synopsis
	Description
	Examples

	BACKUP
	Name
	Synopsis
	Description
	Examples

	BINEX
	Name
	Synopsis
	Description

	BUILD
	Name
	Synopsis
	Description
	Example:

	CHD/CHX
	Name
	Synopsis
	Description
	Examples

	CMP
	Name
	Synopsis
	Description
	Examples

	COBBLER
	Name
	Synopsis
	Description
	Examples

	CONFIG
	Name
	Synopsis
	Description

	COPY
	Name
	Synopsis
	Description
	Examples

	CPUTYPE
	Name
	Synopsis
	Description
	Examples

	DATE
	Name
	Synopsis
	Description
	Examples

	DCHECK
	Name
	Synopsis
	Description
	Restrictions
	Examples

	DEBUG
	Name
	Synopsis
	Description
	Command Summary

	DED
	Name
	Synopsis
	Description

	DEL
	Name
	Synopsis
	Description
	Examples

	DELDIR
	Name
	Synopsis
	Description

	DEVS
	Name
	Synopsis
	Description

	DMODE
	Name
	Synopsis
	Description
	Examples

	DIR
	Name
	Synopsis
	Description
	Examples

	DISASM
	Name
	Synopsis
	Description
	Options
	OS9 Level I Users

	DISPLAY
	Name
	Synopsis
	Description
	Examples

	DSAVE
	Name
	Synopsis
	Description
	Examples

	DUMP
	Name
	Synopsis
	Description
	Examples
	Sample Output

	ECHO
	Name
	Synopsis
	Description
	Examples

	EX
	Name
	Synopsis
	Description
	Examples

	EXBIN
	Name
	Synopsis
	Description

	EXMODE
	Name
	Synopsis
	Description
	EXMODE Parameter Names
	Examples

	FORMAT
	Name
	Synopsis
	Description

	FREE
	Name
	Synopsis
	Description
	Examples

	HELP
	Name
	Synopsis
	Notes

	IDENT
	Name
	Synopsis
	Description
	Examples

	INIZ
	Name
	Synopsis
	Description
	Options:
	Notes:

	Example:

	IRQS
	Name
	Synopsis
	Description

	KILL
	Name
	Synopsis
	Description
	Examples

	LINK
	Name
	Synopsis
	Description
	Examples

	LIST
	Name
	Synopsis
	Description
	Examples

	LOAD
	Name
	Synopsis
	Description
	Examples

	LOGIN
	Name
	Synopsis
	Description
	Logging Off the System
	Displaying a "MessageoftheDay"

	Examples

	MAKDIR
	Name
	Synopsis
	Description
	Examples

	MDIR
	Name
	Synopsis
	Description

	MERGE
	Name
	Synopsis
	Description
	Examples

	MFREE
	Name
	Synopsis
	Description
	Examples

	OS9GEN
	Name
	Synopsis
	Description
	Examples

	PROCS
	Name
	Synopsis
	Description
	Examples

	PWD/PXD
	Name
	Synopsis
	Description
	Examples

	RENAME
	Name
	Synopsis
	Description
	Examples

	RUNB
	Name
	Synopsis
	Description

	SAVE
	Name
	Synopsis
	Description
	Examples

	SETIME
	Name
	Synopsis
	Description
	Examples

	SETPR
	Name
	Synopsis
	Description
	Examples

	SHELL
	Name
	Synopsis
	Description
	Shell Input Line Formal Syntax

	SLEEP
	Name
	Synopsis
	Description
	Examples

	TEE
	Name
	Synopsis
	Description

	TMODE
	Name
	Synopsis
	Description
	Examples

	TSMON
	Name
	Synopsis
	Description
	Logging Off the System

	Examples

	TUNEPORT
	Name
	Synopsis
	Description

	UNLINK
	Name
	Synopsis
	Description
	Examples

	VERIFY
	Name
	Synopsis
	Description
	Examples

	XMODE
	Name
	Synopsis
	Description
	XMODE Parameter Names
	Examples

	Appendix A. OS9 Error Codes
	A.1. Device Driver Errors
	Appendix B. VDG Display System Functions
	B.1. The Video Display Generator
	B.2. Alpha Mode Display
	B.3. Graphics Mode Display
	B.4. Get Status Commands
	Appendix C. Key Definitions With Hexadecimal Values
	Appendix D. Using the Serial Interface
	D.1. Serial Printer Implementation
	D.2. Serial Terminal Implementation

